////////////////////////////////////////////////////////////////////// //// //// //// eth_cop.v //// //// //// //// This file is part of the Ethernet IP core project //// //// http://www.opencores.org/projects/ethmac/ //// //// //// //// Author(s): //// //// - Igor Mohor (igorM@opencores.org) //// //// //// //// All additional information is avaliable in the Readme.txt //// //// file. //// //// //// ////////////////////////////////////////////////////////////////////// //// //// //// Copyright (C) 2001, 2002 Authors //// //// //// //// This source file may be used and distributed without //// //// restriction provided that this copyright statement is not //// //// removed from the file and that any derivative work contains //// //// the original copyright notice and the associated disclaimer. //// //// //// //// This source file is free software; you can redistribute it //// //// and/or modify it under the terms of the GNU Lesser General //// //// Public License as published by the Free Software Foundation; //// //// either version 2.1 of the License, or (at your option) any //// //// later version. //// //// //// //// This source is distributed in the hope that it will be //// //// useful, but WITHOUT ANY WARRANTY; without even the implied //// //// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR //// //// PURPOSE. See the GNU Lesser General Public License for more //// //// details. //// //// //// //// You should have received a copy of the GNU Lesser General //// //// Public License along with this source; if not, download it //// //// from http://www.opencores.org/lgpl.shtml //// //// //// ////////////////////////////////////////////////////////////////////// // // CVS Revision History // // $Log: not supported by cvs2svn $ // Revision 1.3 2002/10/10 16:43:59 mohor // Minor $display change. // // Revision 1.2 2002/09/09 12:54:13 mohor // error acknowledge cycle termination added to display. // // Revision 1.1 2002/08/14 17:16:07 mohor // Traffic cop with 2 wishbone master interfaces and 2 wishbona slave // interfaces: // - Host connects to the master interface // - Ethernet master (DMA) connects to the second master interface // - Memory interface connects to the slave interface // - Ethernet slave interface (access to registers and BDs) connects to second // slave interface // // // // // `include "eth_defines.v" `include "timescale.v" module eth_cop ( // WISHBONE common wb_clk_i, wb_rst_i, // WISHBONE MASTER 1 m1_wb_adr_i, m1_wb_sel_i, m1_wb_we_i, m1_wb_dat_o, m1_wb_dat_i, m1_wb_cyc_i, m1_wb_stb_i, m1_wb_ack_o, m1_wb_err_o, // WISHBONE MASTER 2 m2_wb_adr_i, m2_wb_sel_i, m2_wb_we_i, m2_wb_dat_o, m2_wb_dat_i, m2_wb_cyc_i, m2_wb_stb_i, m2_wb_ack_o, m2_wb_err_o, // WISHBONE slave 1 s1_wb_adr_o, s1_wb_sel_o, s1_wb_we_o, s1_wb_cyc_o, s1_wb_stb_o, s1_wb_ack_i, s1_wb_err_i, s1_wb_dat_i, s1_wb_dat_o, // WISHBONE slave 2 s2_wb_adr_o, s2_wb_sel_o, s2_wb_we_o, s2_wb_cyc_o, s2_wb_stb_o, s2_wb_ack_i, s2_wb_err_i, s2_wb_dat_i, s2_wb_dat_o ); parameter Tp=1; // WISHBONE common input wb_clk_i, wb_rst_i; // WISHBONE MASTER 1 input [31:0] m1_wb_adr_i, m1_wb_dat_i; input [3:0] m1_wb_sel_i; input m1_wb_cyc_i, m1_wb_stb_i, m1_wb_we_i; output [31:0] m1_wb_dat_o; output m1_wb_ack_o, m1_wb_err_o; // WISHBONE MASTER 2 input [31:0] m2_wb_adr_i, m2_wb_dat_i; input [3:0] m2_wb_sel_i; input m2_wb_cyc_i, m2_wb_stb_i, m2_wb_we_i; output [31:0] m2_wb_dat_o; output m2_wb_ack_o, m2_wb_err_o; // WISHBONE slave 1 input [31:0] s1_wb_dat_i; input s1_wb_ack_i, s1_wb_err_i; output [31:0] s1_wb_adr_o, s1_wb_dat_o; output [3:0] s1_wb_sel_o; output s1_wb_we_o, s1_wb_cyc_o, s1_wb_stb_o; // WISHBONE slave 2 input [31:0] s2_wb_dat_i; input s2_wb_ack_i, s2_wb_err_i; output [31:0] s2_wb_adr_o, s2_wb_dat_o; output [3:0] s2_wb_sel_o; output s2_wb_we_o, s2_wb_cyc_o, s2_wb_stb_o; reg m1_in_progress; reg m2_in_progress; reg [31:0] s1_wb_adr_o; reg [3:0] s1_wb_sel_o; reg s1_wb_we_o; reg [31:0] s1_wb_dat_o; reg s1_wb_cyc_o; reg s1_wb_stb_o; reg [31:0] s2_wb_adr_o; reg [3:0] s2_wb_sel_o; reg s2_wb_we_o; reg [31:0] s2_wb_dat_o; reg s2_wb_cyc_o; reg s2_wb_stb_o; reg m1_wb_ack_o; reg [31:0] m1_wb_dat_o; reg m2_wb_ack_o; reg [31:0] m2_wb_dat_o; reg m1_wb_err_o; reg m2_wb_err_o; wire m_wb_access_finished; wire m1_req = m1_wb_cyc_i & m1_wb_stb_i & (`M1_ADDRESSED_S1 | `M1_ADDRESSED_S2); wire m2_req = m2_wb_cyc_i & m2_wb_stb_i & (`M2_ADDRESSED_S1 | `M2_ADDRESSED_S2); always @ (posedge wb_clk_i or posedge wb_rst_i) begin if(wb_rst_i) begin m1_in_progress <=#Tp 0; m2_in_progress <=#Tp 0; s1_wb_adr_o <=#Tp 0; s1_wb_sel_o <=#Tp 0; s1_wb_we_o <=#Tp 0; s1_wb_dat_o <=#Tp 0; s1_wb_cyc_o <=#Tp 0; s1_wb_stb_o <=#Tp 0; s2_wb_adr_o <=#Tp 0; s2_wb_sel_o <=#Tp 0; s2_wb_we_o <=#Tp 0; s2_wb_dat_o <=#Tp 0; s2_wb_cyc_o <=#Tp 0; s2_wb_stb_o <=#Tp 0; end else begin case({m1_in_progress, m2_in_progress, m1_req, m2_req, m_wb_access_finished}) // synopsys_full_case synopsys_paralel_case 5'b00_10_0, 5'b00_11_0 : begin m1_in_progress <=#Tp 1'b1; // idle: m1 or (m1 & m2) want access: m1 -> m if(`M1_ADDRESSED_S1) begin s1_wb_adr_o <=#Tp m1_wb_adr_i; s1_wb_sel_o <=#Tp m1_wb_sel_i; s1_wb_we_o <=#Tp m1_wb_we_i; s1_wb_dat_o <=#Tp m1_wb_dat_i; s1_wb_cyc_o <=#Tp 1'b1; s1_wb_stb_o <=#Tp 1'b1; end else if(`M1_ADDRESSED_S2) begin s2_wb_adr_o <=#Tp m1_wb_adr_i; s2_wb_sel_o <=#Tp m1_wb_sel_i; s2_wb_we_o <=#Tp m1_wb_we_i; s2_wb_dat_o <=#Tp m1_wb_dat_i; s2_wb_cyc_o <=#Tp 1'b1; s2_wb_stb_o <=#Tp 1'b1; end else $display("(%t)(%m)WISHBONE ERROR: Unspecified address space accessed", $time); end 5'b00_01_0 : begin m2_in_progress <=#Tp 1'b1; // idle: m2 wants access: m2 -> m if(`M2_ADDRESSED_S1) begin s1_wb_adr_o <=#Tp m2_wb_adr_i; s1_wb_sel_o <=#Tp m2_wb_sel_i; s1_wb_we_o <=#Tp m2_wb_we_i; s1_wb_dat_o <=#Tp m2_wb_dat_i; s1_wb_cyc_o <=#Tp 1'b1; s1_wb_stb_o <=#Tp 1'b1; end else if(`M2_ADDRESSED_S2) begin s2_wb_adr_o <=#Tp m2_wb_adr_i; s2_wb_sel_o <=#Tp m2_wb_sel_i; s2_wb_we_o <=#Tp m2_wb_we_i; s2_wb_dat_o <=#Tp m2_wb_dat_i; s2_wb_cyc_o <=#Tp 1'b1; s2_wb_stb_o <=#Tp 1'b1; end else $display("(%t)(%m)WISHBONE ERROR: Unspecified address space accessed", $time); end 5'b10_10_1, 5'b10_11_1 : begin m1_in_progress <=#Tp 1'b0; // m1 in progress. Cycle is finished. Send ack or err to m1. if(`M1_ADDRESSED_S1) begin s1_wb_cyc_o <=#Tp 1'b0; s1_wb_stb_o <=#Tp 1'b0; end else if(`M1_ADDRESSED_S2) begin s2_wb_cyc_o <=#Tp 1'b0; s2_wb_stb_o <=#Tp 1'b0; end end 5'b01_01_1, 5'b01_11_1 : begin m2_in_progress <=#Tp 1'b0; // m2 in progress. Cycle is finished. Send ack or err to m2. if(`M2_ADDRESSED_S1) begin s1_wb_cyc_o <=#Tp 1'b0; s1_wb_stb_o <=#Tp 1'b0; end else if(`M2_ADDRESSED_S2) begin s2_wb_cyc_o <=#Tp 1'b0; s2_wb_stb_o <=#Tp 1'b0; end end endcase end end // Generating Ack for master 1 always @ (m1_in_progress or m1_wb_adr_i or s1_wb_ack_i or s2_wb_ack_i or s1_wb_dat_i or s2_wb_dat_i or `M1_ADDRESSED_S1 or `M1_ADDRESSED_S2) begin if(m1_in_progress) begin if(`M1_ADDRESSED_S1) begin m1_wb_ack_o <= s1_wb_ack_i; m1_wb_dat_o <= s1_wb_dat_i; end else if(`M1_ADDRESSED_S2) begin m1_wb_ack_o <= s2_wb_ack_i; m1_wb_dat_o <= s2_wb_dat_i; end end else m1_wb_ack_o <= 0; end // Generating Ack for master 2 always @ (m2_in_progress or m2_wb_adr_i or s1_wb_ack_i or s2_wb_ack_i or s1_wb_dat_i or s2_wb_dat_i or `M2_ADDRESSED_S1 or `M2_ADDRESSED_S2) begin if(m2_in_progress) begin if(`M2_ADDRESSED_S1) begin m2_wb_ack_o <= s1_wb_ack_i; m2_wb_dat_o <= s1_wb_dat_i; end else if(`M2_ADDRESSED_S2) begin m2_wb_ack_o <= s2_wb_ack_i; m2_wb_dat_o <= s2_wb_dat_i; end end else m2_wb_ack_o <= 0; end // Generating Err for master 1 always @ (m1_in_progress or m1_wb_adr_i or s1_wb_err_i or s2_wb_err_i or `M2_ADDRESSED_S1 or `M2_ADDRESSED_S2 or m1_wb_cyc_i or m1_wb_stb_i) begin if(m1_in_progress) begin if(`M1_ADDRESSED_S1) m1_wb_err_o <= s1_wb_err_i; else if(`M1_ADDRESSED_S2) m1_wb_err_o <= s2_wb_err_i; end else if(m1_wb_cyc_i & m1_wb_stb_i & ~`M1_ADDRESSED_S1 & ~`M1_ADDRESSED_S2) m1_wb_err_o <= 1'b1; else m1_wb_err_o <= 1'b0; end // Generating Err for master 2 always @ (m2_in_progress or m2_wb_adr_i or s1_wb_err_i or s2_wb_err_i or `M2_ADDRESSED_S1 or `M2_ADDRESSED_S2 or m2_wb_cyc_i or m2_wb_stb_i) begin if(m2_in_progress) begin if(`M2_ADDRESSED_S1) m2_wb_err_o <= s1_wb_err_i; else if(`M2_ADDRESSED_S2) m2_wb_err_o <= s2_wb_err_i; end else if(m2_wb_cyc_i & m2_wb_stb_i & ~`M2_ADDRESSED_S1 & ~`M2_ADDRESSED_S2) m2_wb_err_o <= 1'b1; else m2_wb_err_o <= 1'b0; end assign m_wb_access_finished = m1_wb_ack_o | m1_wb_err_o | m2_wb_ack_o | m2_wb_err_o; // Activity monitor integer cnt; always @ (posedge wb_clk_i or posedge wb_rst_i) begin if(wb_rst_i) cnt <=#Tp 0; else if(s1_wb_ack_i | s1_wb_err_i | s2_wb_ack_i | s2_wb_err_i) cnt <=#Tp 0; else if(s1_wb_cyc_o | s2_wb_cyc_o) cnt <=#Tp cnt+1; end always @ (posedge wb_clk_i) begin if(cnt==1000) begin $display("(%0t)(%m) ERROR: WB activity ??? ", $time); if(s1_wb_cyc_o) begin $display("s1_wb_dat_o = 0x%0x", s1_wb_dat_o); $display("s1_wb_adr_o = 0x%0x", s1_wb_adr_o); $display("s1_wb_sel_o = 0x%0x", s1_wb_sel_o); $display("s1_wb_we_o = 0x%0x", s1_wb_we_o); end else if(s2_wb_cyc_o) begin $display("s2_wb_dat_o = 0x%0x", s2_wb_dat_o); $display("s2_wb_adr_o = 0x%0x", s2_wb_adr_o); $display("s2_wb_sel_o = 0x%0x", s2_wb_sel_o); $display("s2_wb_we_o = 0x%0x", s2_wb_we_o); end $stop; end end always @ (posedge wb_clk_i) begin if(s1_wb_err_i & s1_wb_cyc_o) begin $display("(%0t) ERROR: WB cycle finished with error acknowledge ", $time); $display("s1_wb_dat_o = 0x%0x", s1_wb_dat_o); $display("s1_wb_adr_o = 0x%0x", s1_wb_adr_o); $display("s1_wb_sel_o = 0x%0x", s1_wb_sel_o); $display("s1_wb_we_o = 0x%0x", s1_wb_we_o); $stop; end if(s2_wb_err_i & s2_wb_cyc_o) begin $display("(%0t) ERROR: WB cycle finished with error acknowledge ", $time); $display("s2_wb_dat_o = 0x%0x", s2_wb_dat_o); $display("s2_wb_adr_o = 0x%0x", s2_wb_adr_o); $display("s2_wb_sel_o = 0x%0x", s2_wb_sel_o); $display("s2_wb_we_o = 0x%0x", s2_wb_we_o); $stop; end end endmodule