// ========== Copyright Header Begin ========================================== // // OpenSPARC T1 Processor File: sparc_exu_aluaddsub.v // Copyright (c) 2006 Sun Microsystems, Inc. All Rights Reserved. // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES. // // The above named program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public // License version 2 as published by the Free Software Foundation. // // The above named program is distributed in the hope that it will be // useful, but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public // License along with this work; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. // // ========== Copyright Header End ============================================ //////////////////////////////////////////////////////////////////////// /* // Module Name: sparc_exu_aluaddsub // Description: This block implements addition and subtraction. // It takes two operands, a carry_in, plus two control signals // (subtract and use_cin). If subtract is high, then rs2_data // is subtracted from rs1_data. If use_cin is high, then // carry_in is added to the sum (addition) or subtracted from // the result (subtraction). It outputs the result of the // specified operation. To keep the cin calculation from // being in the critical path, it is moved into the d-stage. // All other calculations are in the e-stage. */ module sparc_exu_aluaddsub (/*AUTOARG*/ // Outputs adder_out, spr_out, alu_ecl_cout64_e_l, alu_ecl_cout32_e, alu_ecl_adderin2_63_e, alu_ecl_adderin2_31_e, // Inputs clk, se, byp_alu_rs1_data_e, byp_alu_rs2_data_e, ecl_alu_cin_e, ifu_exu_invert_d ); input clk; input se; input [63:0] byp_alu_rs1_data_e; // 1st input operand input [63:0] byp_alu_rs2_data_e; // 2nd input operand input ecl_alu_cin_e; // carry in input ifu_exu_invert_d; // subtract used by adder output [63:0] adder_out; // result of adder output [63:0] spr_out; // result of sum predict output alu_ecl_cout64_e_l; output alu_ecl_cout32_e; output alu_ecl_adderin2_63_e; output alu_ecl_adderin2_31_e; wire [63:0] rs2_data; // 2nd input to adder wire [63:0] rs1_data; // 1st input to adder wire [63:0] subtract_d; wire [63:0] subtract_e; wire cout64_e; //////////////////////////////////////////// // Module implementation //////////////////////////////////////////// assign subtract_d[63:0] = {64{ifu_exu_invert_d}}; dff_s #(64) sub_dff(.din(subtract_d[63:0]), .clk(clk), .q(subtract_e[63:0]), .se(se), .si(), .so()); assign rs1_data[63:0] = byp_alu_rs1_data_e[63:0]; assign rs2_data[63:0] = byp_alu_rs2_data_e[63:0] ^ subtract_e[63:0]; assign alu_ecl_adderin2_63_e = rs2_data[63]; assign alu_ecl_adderin2_31_e = rs2_data[31]; sparc_exu_aluadder64 adder(.rs1_data(rs1_data[63:0]), .rs2_data(rs2_data[63:0]), .cin(ecl_alu_cin_e), .adder_out(adder_out[63:0]), .cout32(alu_ecl_cout32_e), .cout64(cout64_e)); assign alu_ecl_cout64_e_l = ~cout64_e; // sum predict sparc_exu_aluspr spr(.rs1_data(rs1_data[63:0]), .rs2_data(rs2_data[63:0]), .cin(ecl_alu_cin_e), .spr_out(spr_out[63:0])); endmodule // sparc_exu_aluaddsub