// ========== Copyright Header Begin ========================================== // // OpenSPARC T1 Processor File: sparc_exu_eclbyplog_rs1.v // Copyright (c) 2006 Sun Microsystems, Inc. All Rights Reserved. // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES. // // The above named program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public // License version 2 as published by the Free Software Foundation. // // The above named program is distributed in the hope that it will be // useful, but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public // License along with this work; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. // // ========== Copyright Header End ============================================ //////////////////////////////////////////////////////////////////////// /* // Module Name: sparc_exu_eclbyplog_rs1 // Description: This block implements the bypass logic for a single // operand. It takes the destination registers of all // four forwarding sources and the rs. It also has the // thread for the instruction in each stage and whether // the instruction writes to the register file. It won't // bypass if bypass_enable is low or rs =0. This is for the // special case of rs1 which has two bypass sets. One uses // the pc as an input (other) and one does not. */ module sparc_exu_eclbyplog_rs1 (/*AUTOARG*/ // Outputs rs_sel_mux1_m, rs_sel_mux1_w, rs_sel_mux1_w2, rs_sel_mux1_other, rs_sel_mux2_usemux1, rs_sel_mux2_rf, rs_sel_mux2_e, rs_sel_mux2_ld, rs_sel_longmux_g2, rs_sel_longmux_w2, rs_sel_longmux_ldxa, ecl_byp_rcc_mux1_sel_m, ecl_byp_rcc_mux1_sel_w, ecl_byp_rcc_mux1_sel_w2, ecl_byp_rcc_mux1_sel_other, ecl_byp_rcc_mux2_sel_usemux1, ecl_byp_rcc_mux2_sel_rf, ecl_byp_rcc_mux2_sel_e, ecl_byp_rcc_mux2_sel_ld, // Inputs sehold, use_other, rs, rd_e, rd_m, ecl_irf_rd_w, ld_rd_g, wb_byplog_rd_w2, wb_byplog_rd_g2, tid_d, thr_match_de, thr_match_dm, ecl_irf_tid_w, ld_thr_match_dg, wb_byplog_tid_w2, ld_thr_match_dg2, ifu_exu_kill_e, wb_e, bypass_m, lsu_exu_dfill_vld_g, bypass_w, wb_byplog_wen_w2, wb_byplog_wen_g2, ecl_byp_ldxa_g ) ; input sehold; input use_other; input [4:0] rs; // source register input [4:0] rd_e; // destination regs for all stages input [4:0] rd_m; input [4:0] ecl_irf_rd_w; input [4:0] ld_rd_g; input [4:0] wb_byplog_rd_w2; input [4:0] wb_byplog_rd_g2; input [1:0] tid_d; input thr_match_de; input thr_match_dm; input [1:0] ecl_irf_tid_w; input ld_thr_match_dg; input [1:0] wb_byplog_tid_w2; input ld_thr_match_dg2; input ifu_exu_kill_e; input wb_e; // whether each stage writes to reg input bypass_m; // file input lsu_exu_dfill_vld_g; input bypass_w; input wb_byplog_wen_w2; input wb_byplog_wen_g2; input ecl_byp_ldxa_g; output rs_sel_mux1_m; output rs_sel_mux1_w; output rs_sel_mux1_w2; output rs_sel_mux1_other; output rs_sel_mux2_usemux1; output rs_sel_mux2_rf; output rs_sel_mux2_e; output rs_sel_mux2_ld; output rs_sel_longmux_g2; output rs_sel_longmux_w2; output rs_sel_longmux_ldxa; output ecl_byp_rcc_mux1_sel_m; output ecl_byp_rcc_mux1_sel_w; output ecl_byp_rcc_mux1_sel_w2; output ecl_byp_rcc_mux1_sel_other; output ecl_byp_rcc_mux2_sel_usemux1; output ecl_byp_rcc_mux2_sel_rf; output ecl_byp_rcc_mux2_sel_e; output ecl_byp_rcc_mux2_sel_ld; wire use_e, use_m, use_w, use_w2, use_rf, use_ld, use_ldxa; wire match_e, match_m, match_w, match_w2, match_ld; // outputs of comparison wire match_g2; wire bypass; // boolean that allows bypassing wire rs_is_nonzero; wire rcc_bypass; // Don't bypass if rs == 0 or we are supposed to use other assign rs_is_nonzero = rs[0]|rs[1]|rs[2]|rs[3]|rs[4]; assign bypass = rs_is_nonzero & ~use_other & ~sehold; // Normal pipe priority: E, M, W, RF // Ld priority: LD, RF // W2 priority: W2, RF assign use_e = match_e & wb_e & ~ifu_exu_kill_e; assign use_m = match_m & bypass_m & ~use_e; assign use_w = match_w & bypass_w & ~use_m & ~use_e; assign use_ld = match_ld & lsu_exu_dfill_vld_g & ~ecl_byp_ldxa_g; assign use_ldxa = match_ld & ecl_byp_ldxa_g; assign use_w2 = (match_w2 & wb_byplog_wen_w2 | match_g2 & wb_byplog_wen_g2) & ~use_e & ~use_m; assign use_rf = ~use_w2 & ~use_w & ~use_m & ~use_e & ~use_ld & ~use_ldxa; // mux1[M, W, W2, OTHER(optional)] // mux2[mux1, RF, E, LD] assign rs_sel_mux2_e = (use_e & bypass); assign rs_sel_mux2_rf = ((use_rf | ~bypass) & ~use_other); assign rs_sel_mux2_ld = (use_ld & ~use_e & ~use_w & ~use_m & ~use_w2 & bypass); assign rs_sel_mux2_usemux1 = (use_other & ~sehold) | (~rs_sel_mux1_other & ~use_e); assign rs_sel_mux1_other = ~((use_m | use_w | use_w2 | use_ldxa) & bypass); assign rs_sel_mux1_w2 = ((use_ldxa | use_w2) & bypass); assign rs_sel_mux1_w = (use_w & ~use_w2 & ~use_ldxa & bypass); assign rs_sel_mux1_m = (use_m & ~use_w2 & ~use_ldxa & bypass); assign rs_sel_longmux_ldxa = use_ldxa; assign rs_sel_longmux_g2 = match_g2 & wb_byplog_wen_g2 & ~use_ldxa; assign rs_sel_longmux_w2 = ~use_ldxa & ~(match_g2 & wb_byplog_wen_g2); // Bypassing for cc generation (don't use other input) assign rcc_bypass = rs_is_nonzero; assign ecl_byp_rcc_mux2_sel_e = use_e & rcc_bypass; assign ecl_byp_rcc_mux2_sel_rf = use_rf | ~rcc_bypass; assign ecl_byp_rcc_mux2_sel_ld = use_ld & ~use_e & ~use_w & ~use_m & ~use_w2 & rcc_bypass; assign ecl_byp_rcc_mux2_sel_usemux1 = (use_m | use_w | use_w2 | use_ldxa) & rcc_bypass & ~use_e; assign ecl_byp_rcc_mux1_sel_other = ~(use_m | use_w | use_w2 | use_ldxa); assign ecl_byp_rcc_mux1_sel_w2 = use_w2 | use_ldxa; assign ecl_byp_rcc_mux1_sel_w = use_w & ~use_w2 & ~use_ldxa; assign ecl_byp_rcc_mux1_sel_m = use_m & ~use_w2 & ~use_ldxa; // Comparisons assign match_e = thr_match_de & (rs[4:0] == rd_e[4:0]); // sparc_exu_eclcomp7 e_comp7(.out(match_e), .in1({tid_d[1:0],rs[4:0]}), // .in2({ecl_rml_tid_e[1:0],rd_e[4:0]})); assign match_m = thr_match_dm & (rs[4:0] == rd_m[4:0]); // sparc_exu_eclcomp7 m_comp7(.out(match_m), .in1({tid_d[1:0],rs[4:0]}), // .in2({tid_m[1:0],rd_m[4:0]})); sparc_exu_eclcomp7 w_comp7(.out(match_w), .in1({tid_d[1:0],rs[4:0]}), .in2({ecl_irf_tid_w[1:0],ecl_irf_rd_w[4:0]})); sparc_exu_eclcomp7 w2_comp7(.out(match_w2), .in1({tid_d[1:0],rs[4:0]}), .in2({wb_byplog_tid_w2[1:0],wb_byplog_rd_w2[4:0]})); assign match_ld = ld_thr_match_dg & (rs[4:0] == ld_rd_g[4:0]); assign match_g2 = ld_thr_match_dg2 & (rs[4:0] == wb_byplog_rd_g2[4:0]); /* -----\/----- EXCLUDED -----\/----- sparc_exu_eclcomp7 ld_comp7(.out(match_ld), .in1({tid_d[1:0],rs[4:0]}), .in2({ld_tid_g[1:0],ld_rd_g[4:0]})); sparc_exu_eclcomp7 g2_comp7(.out(match_g2), .in1({tid_d[1:0],rs[4:0]}), .in2({wb_byplog_tid_g2[1:0],wb_byplog_rd_g2[4:0]})); -----/\----- EXCLUDED -----/\----- */ endmodule // sparc_exu_eclbyplog