// ========== Copyright Header Begin ========================================== // // OpenSPARC T1 Processor File: sparc_ffu_ctl_visctl.v // Copyright (c) 2006 Sun Microsystems, Inc. All Rights Reserved. // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES. // // The above named program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public // License version 2 as published by the Free Software Foundation. // // The above named program is distributed in the hope that it will be // useful, but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public // License along with this work; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. // // ========== Copyright Header End ============================================ //////////////////////////////////////////////////////////////////////// /* // Module Name: sparc_ffu_ctl_visctl // Description: This is the ffu vis control block. */ module sparc_ffu_ctl_visctl (/*AUTOARG*/ // Outputs ctl_vis_sel_add, ctl_vis_sel_log, ctl_vis_sel_align, ctl_vis_add32, ctl_vis_subtract, ctl_vis_cin, ctl_vis_align0, ctl_vis_align2, ctl_vis_align4, ctl_vis_align6, ctl_vis_align_odd, ctl_vis_log_sel_pass, ctl_vis_log_sel_nand, ctl_vis_log_sel_nor, ctl_vis_log_sel_xor, ctl_vis_log_invert_rs1, ctl_vis_log_invert_rs2, ctl_vis_log_constant, ctl_vis_log_pass_const, ctl_vis_log_pass_rs1, ctl_vis_log_pass_rs2, vis_result, illegal_vis_e, vis_nofrf_e, visop_m, visop_w_vld, vis_wen_next, fpu_rnd, ffu_exu_rsr_data_hi_m, ffu_exu_rsr_data_mid_m, ffu_exu_rsr_data_lo_m, ctl_dp_wsr_data_w2, ctl_dp_gsr_wsr_w2, ctl_dp_thr_e, // Inputs clk, se, reset, opf, tid_w2, tid_e, tid, visop_e, kill_w, ifu_tlu_sraddr_d, exu_ffu_wsr_inst_e, exu_ffu_gsr_align_m, exu_ffu_gsr_rnd_m, exu_ffu_gsr_mask_m, exu_ffu_gsr_scale_m, ifu_ffu_rnd_e, dp_ctl_fsr_rnd, flush_w2, thr_match_mw2, thr_match_ww2, ifu_tlu_inst_vld_w, ue_trap_w3, frs1_e, frs2_e, frd_e, rollback_c3, rollback_rs2_w2, visop, rollback_rs1_w3, dp_ctl_gsr_mask_e, dp_ctl_gsr_scale_e ) ; input clk; input se; input reset; input [8:0] opf; input [1:0] tid_w2; input [1:0] tid_e; input [1:0] tid; input visop_e; input kill_w; input [6:0] ifu_tlu_sraddr_d; input exu_ffu_wsr_inst_e; input [2:0] exu_ffu_gsr_align_m; input [2:0] exu_ffu_gsr_rnd_m; input [31:0] exu_ffu_gsr_mask_m; input [4:0] exu_ffu_gsr_scale_m; input [2:0] ifu_ffu_rnd_e; input [1:0] dp_ctl_fsr_rnd; input flush_w2; input thr_match_mw2; input thr_match_ww2; input ifu_tlu_inst_vld_w; input ue_trap_w3; input [4:0] frs1_e; input [4:0] frs2_e; input [4:0] frd_e; input rollback_c3; input rollback_rs2_w2; input visop; input rollback_rs1_w3; input [31:0] dp_ctl_gsr_mask_e; input [4:0] dp_ctl_gsr_scale_e; output ctl_vis_sel_add; output ctl_vis_sel_log; output ctl_vis_sel_align; output ctl_vis_add32; output ctl_vis_subtract; output ctl_vis_cin; output ctl_vis_align0; output ctl_vis_align2; output ctl_vis_align4; output ctl_vis_align6; output ctl_vis_align_odd; output ctl_vis_log_sel_pass; output ctl_vis_log_sel_nand; output ctl_vis_log_sel_nor; output ctl_vis_log_sel_xor; output ctl_vis_log_invert_rs1; output ctl_vis_log_invert_rs2; output ctl_vis_log_constant; output ctl_vis_log_pass_const; output ctl_vis_log_pass_rs1; output ctl_vis_log_pass_rs2; output vis_result; output illegal_vis_e; output vis_nofrf_e; output visop_m; output visop_w_vld; output vis_wen_next; output [1:0] fpu_rnd; output [31:0] ffu_exu_rsr_data_hi_m; output [2:0] ffu_exu_rsr_data_mid_m; output [7:0] ffu_exu_rsr_data_lo_m; output [36:0] ctl_dp_wsr_data_w2; output [3:0] ctl_dp_gsr_wsr_w2; output [3:0] ctl_dp_thr_e; wire illegal_rs1_e; wire illegal_rs2_e; wire illegal_siam_e; wire rs2_check_nonzero_e; wire rs1_check_nonzero_e; wire visop_e; wire issue_visop_e; wire visop_m; wire visop_w; wire visop_w_vld; wire visop_w2_vld; wire visop_w2; wire visop_w3; wire visop_w3_vld; wire add; wire align; wire logic; wire siam; wire alignaddr; wire opf_log_zero; wire opf_log_one; wire opf_log_src1; wire opf_log_src2; wire opf_log_not1; wire opf_log_not2; wire opf_log_or; wire opf_log_nor; wire opf_log_and; wire opf_log_nand; wire opf_log_xor; wire opf_log_xnor; wire opf_log_ornot1; wire opf_log_ornot2; wire opf_log_andnot1; wire opf_log_andnot2; wire invert_rs1_next; wire invert_rs2_next; wire log_pass_rs1_next; wire log_pass_rs2_next; wire log_pass_rs1; wire log_pass_rs2; wire [2:0] t0_gsr_rnd; wire [2:0] t1_gsr_rnd; wire [2:0] t2_gsr_rnd; wire [2:0] t3_gsr_rnd; wire [2:0] t0_gsr_align; wire [2:0] t1_gsr_align; wire [2:0] t2_gsr_align; wire [2:0] t3_gsr_align; wire [2:0] t0_gsr_rnd_next; wire [2:0] t1_gsr_rnd_next; wire [2:0] t2_gsr_rnd_next; wire [2:0] t3_gsr_rnd_next; wire [2:0] t0_gsr_align_next; wire [2:0] t1_gsr_align_next; wire [2:0] t2_gsr_align_next; wire [2:0] t3_gsr_align_next; wire [2:0] gsr_rnd_e; wire [2:0] gsr_align_e; wire t0_rnd_wen_l; wire t0_gsr_wsr_w2; wire t0_siam_w2; wire t0_align_wen_l; wire t0_alignaddr_w2; wire t1_rnd_wen_l; wire t1_gsr_wsr_w2; wire t1_siam_w2; wire t1_align_wen_l; wire t1_alignaddr_w2; wire t2_rnd_wen_l; wire t2_gsr_wsr_w2; wire t2_siam_w2; wire t2_align_wen_l; wire t2_alignaddr_w2; wire t3_rnd_wen_l; wire t3_gsr_wsr_w2; wire t3_siam_w2; wire t3_align_wen_l; wire t3_alignaddr_w2; wire [2:0] siam_rnd; wire [3:0] thr_w2; wire [3:0] ctl_dp_thr_e; wire [3:0] thr_fp; wire gsr_addr_d; wire gsr_addr_e; wire wgsr_e; wire wgsr_m; wire wgsr_w; wire wgsr_vld_m; wire wgsr_vld_w; wire wgsr_vld_w2; wire wgsr_w2; wire [2:0] gsr_rnd; wire [1:0] fpu_rnd_next; wire [2:0] gsr_align; wire [2:0] gsr_align_d1; wire [2:0] align_addr_data_w2; wire [2:0] wgsr_align_offset_w; wire [2:0] wgsr_rnd_w; wire [2:0] wgsr_align_offset_w2; wire [2:0] wgsr_rnd_w2; wire [36:0] wsr_data_m; wire [36:0] wsr_data_w; ////////////////////////////////////// // VIS PIPELINE //------------------------------------ // Note: rs2_ce, rs2_ue, rs1_ue will kill vis instruction // in addition to any traps, etc. // These are incorporated into the "kill" signals // E: ren rs2 // M: ren rs1 // W: rs2 data ready, check rs2 ecc // W2: rs1 data ready, check rs1 ecc // W3: execute vis operation (result written to rs2/rd flop) // W4: gen ecc and write to frf dff_s visop_e2m(.din(issue_visop_e), .clk(clk), .q(visop_m), .si(), .so(), .se(se)); dff_s visop_m2w(.din(visop_m), .clk(clk), .q(visop_w), .si(), .so(), .se(se)); dff_s visop_w2w2(.din(visop_w_vld), .clk(clk), .q(visop_w2), .si(), .so(), .se(se)); dff_s visop_w22w3(.din(visop_w2_vld), .clk(clk), .q(visop_w3), .si(), .so(), .se(se)); assign issue_visop_e = visop_e | visop & rollback_c3; // only check kills in w since they are accumulated into kill_w assign visop_w_vld = visop_w & ~kill_w; assign visop_w2_vld = visop_w2 & ~flush_w2 & ~rollback_rs2_w2; assign visop_w3_vld = visop_w3 & ~ue_trap_w3 & ~rollback_rs1_w3; assign vis_result = visop_w3_vld; assign vis_wen_next = vis_result & ~siam & ~alignaddr; //////////////////////////////////// // Decode opf //////////////////////////////////// assign add = ~opf[8] & ~opf[7] & opf[6] & ~opf[5] & opf[4] & ~opf[3]; assign align = ~opf[8] & ~opf[7] & opf[6] & ~opf[5] & ~opf[4] & opf[3] & ~opf[2] & ~opf[1] & ~opf[0]; assign logic = ~opf[8] & ~opf[7] & opf[6] & opf[5]; assign siam = ~opf[8] & opf[7] & ~opf[6] & ~opf[5] & ~opf[4] & ~opf[3] & ~opf[2] & ~opf[1] & opf[0]; assign alignaddr = ~opf[8] & ~opf[7] & ~opf[6] & ~opf[5] & opf[4] & opf[3] & ~opf[2] & ~opf[0]; //alignaddress assign illegal_vis_e = (visop_e & ~(add | align | logic | siam | alignaddr) | illegal_rs1_e | illegal_rs2_e | illegal_siam_e); assign rs1_check_nonzero_e = visop_e & (siam | (logic & (opf_log_zero | opf_log_one | opf_log_src2 | opf_log_not2))); assign rs2_check_nonzero_e = visop_e & logic & (opf_log_zero | opf_log_one | opf_log_src1 | opf_log_not1); assign illegal_rs1_e = (frs1_e[4:0] != 5'b00000) & rs1_check_nonzero_e; assign illegal_rs2_e = (frs2_e[4:0] != 5'b00000) & rs2_check_nonzero_e; assign illegal_siam_e = ((frd_e[4:0] != 5'b00000) | frs2_e[4] | frs2_e[3]) & siam & visop_e; assign vis_nofrf_e = visop_e & (siam | alignaddr | opf_log_zero | opf_log_one); // controls for add // Make subtract come out of its own flop for loading purposes (very critical timing) dff_s sub_dff(.din(opf[2]), .clk(clk), .q(ctl_vis_subtract), .se(se), .si(), .so()); assign ctl_vis_cin = opf[2]; assign ctl_vis_add32 = opf[1]; // controls for logic assign opf_log_zero = ~opf[4] & ~opf[3] & ~opf[2] & ~opf[1]; assign opf_log_nor = ~opf[4] & ~opf[3] & ~opf[2] & opf[1]; assign opf_log_andnot2 = ~opf[4] & ~opf[3] & opf[2] & ~opf[1]; assign opf_log_not2 = ~opf[4] & ~opf[3] & opf[2] & opf[1]; assign opf_log_andnot1 = ~opf[4] & opf[3] & ~opf[2] & ~opf[1]; assign opf_log_not1 = ~opf[4] & opf[3] & ~opf[2] & opf[1]; assign opf_log_xor = ~opf[4] & opf[3] & opf[2] & ~opf[1]; assign opf_log_nand = ~opf[4] & opf[3] & opf[2] & opf[1]; assign opf_log_and = opf[4] & ~opf[3] & ~opf[2] & ~opf[1]; assign opf_log_xnor = opf[4] & ~opf[3] & ~opf[2] & opf[1]; assign opf_log_src1 = opf[4] & ~opf[3] & opf[2] & ~opf[1]; assign opf_log_ornot2 = opf[4] & ~opf[3] & opf[2] & opf[1]; assign opf_log_src2 = opf[4] & opf[3] & ~opf[2] & ~opf[1]; assign opf_log_ornot1 = opf[4] & opf[3] & ~opf[2] & opf[1]; assign opf_log_or = opf[4] & opf[3] & opf[2] & ~opf[1]; assign opf_log_one = opf[4] & opf[3] & opf[2] & opf[1]; // selects for logic mux assign ctl_vis_log_sel_nand = opf_log_or | opf_log_nand | opf_log_ornot1 | opf_log_ornot2; assign ctl_vis_log_sel_xor = opf_log_xor | opf_log_xnor; assign ctl_vis_log_sel_nor = opf_log_and | opf_log_nor | opf_log_andnot1 | opf_log_andnot2; assign ctl_vis_log_sel_pass = (opf_log_zero | opf_log_one | opf_log_src1 | opf_log_src2 | opf_log_not1 | opf_log_not2); assign invert_rs1_next = (opf_log_not1 | opf_log_or | opf_log_and | opf_log_ornot2 | opf_log_andnot2); assign invert_rs2_next = (opf_log_not2 | opf_log_or | opf_log_and | opf_log_ornot1 | opf_log_andnot1 | opf_log_xnor); dff_s invert_rs1_dff(.din(invert_rs1_next), .clk(clk), .q(ctl_vis_log_invert_rs1), .se(se), .si(), .so()); dff_s invert_rs2_dff(.din(invert_rs2_next), .clk(clk), .q(ctl_vis_log_invert_rs2), .se(se), .si(), .so()); // precalculate to help timing assign log_pass_rs1_next = opf_log_src1 | opf_log_not1; assign log_pass_rs2_next = opf_log_src2 | opf_log_not2; dff_s #(2) log_pass_dff(.din({log_pass_rs1_next,log_pass_rs2_next}), .clk(clk), .q({log_pass_rs1,log_pass_rs2}), .se(se), .si(), .so()); assign ctl_vis_log_pass_rs1 = log_pass_rs1; assign ctl_vis_log_pass_rs2 = log_pass_rs2 & ~log_pass_rs1; assign ctl_vis_log_constant = opf_log_one; assign ctl_vis_log_pass_const = ~(ctl_vis_log_pass_rs1 | ctl_vis_log_pass_rs2); // controls for falign assign ctl_vis_align0 = ~gsr_align_d1[2] & ~gsr_align_d1[1]; assign ctl_vis_align2 = ~gsr_align_d1[2] & gsr_align_d1[1]; assign ctl_vis_align4 = gsr_align_d1[2] & ~gsr_align_d1[1]; assign ctl_vis_align6 = gsr_align_d1[2] & gsr_align_d1[1]; assign ctl_vis_align_odd = gsr_align_d1[0]; // controls for output mux assign ctl_vis_sel_add = add; assign ctl_vis_sel_align = align; assign ctl_vis_sel_log = ~(add | align); /////////////////////////////////////////////////////////// // GSR.alignaddr_offset, GSR.IM, GSR.IRND /////////////////////////////////////////////////////////// mux4ds #(6) curr_gsr_mux(.dout({gsr_rnd[2:0], gsr_align[2:0]}), .in0({t0_gsr_rnd[2:0], t0_gsr_align[2:0]}), .in1({t1_gsr_rnd[2:0], t1_gsr_align[2:0]}), .in2({t2_gsr_rnd[2:0], t2_gsr_align[2:0]}), .in3({t3_gsr_rnd[2:0], t3_gsr_align[2:0]}), .sel0(thr_fp[0]), .sel1(thr_fp[1]), .sel2(thr_fp[2]), .sel3(thr_fp[3])); mux4ds #(6) gsr_e_mux(.dout({gsr_rnd_e[2:0], gsr_align_e[2:0]}), .in0({t0_gsr_rnd[2:0], t0_gsr_align[2:0]}), .in1({t1_gsr_rnd[2:0], t1_gsr_align[2:0]}), .in2({t2_gsr_rnd[2:0], t2_gsr_align[2:0]}), .in3({t3_gsr_rnd[2:0], t3_gsr_align[2:0]}), .sel0(ctl_dp_thr_e[0]), .sel1(ctl_dp_thr_e[1]), .sel2(ctl_dp_thr_e[2]), .sel3(ctl_dp_thr_e[3])); dff_s #(43) gsr_e2m(.din({dp_ctl_gsr_mask_e[31:0],gsr_rnd_e[2:0], dp_ctl_gsr_scale_e[4:0],gsr_align_e[2:0]}), .clk(clk), .q({ffu_exu_rsr_data_hi_m[31:0],ffu_exu_rsr_data_mid_m[2:0], ffu_exu_rsr_data_lo_m[7:0]}), .se(se), .si(), .so()); dff_s #(3) gsr_align_dff(.din(gsr_align[2:0]), .clk(clk), .q(gsr_align_d1[2:0]), .se(se), .si(), .so()); // put in to help timing for sending to lsu dff_s #(2) fpu_rnd_dff(.din(fpu_rnd_next[1:0]), .clk(clk), .q(fpu_rnd[1:0]), .si(), .so(), .se(se)); assign fpu_rnd_next[1:0] = (gsr_rnd[2])? gsr_rnd[1:0]: dp_ctl_fsr_rnd[1:0]; // if alignaddress_little then write the 2's complement assign align_addr_data_w2[2:0] = (opf[1])? (~wgsr_align_offset_w2[2:0] + 3'b001): wgsr_align_offset_w2[2:0]; assign gsr_addr_d = (ifu_tlu_sraddr_d[6:0] == 7'b0010011); assign wgsr_e = exu_ffu_wsr_inst_e & gsr_addr_e; dff_s gsr_addr_d2e(.din(gsr_addr_d), .clk(clk), .q(gsr_addr_e), .se(se), .si(), .so()); // need independent kill checks because this isn't killed by new fpop assign wgsr_vld_m = wgsr_m & ~(thr_match_mw2 & flush_w2); assign wgsr_vld_w = wgsr_w & ifu_tlu_inst_vld_w & ~(thr_match_ww2 & flush_w2); assign wgsr_vld_w2 = wgsr_w2 & ~flush_w2; dff_s wgsr_e2m(.din(wgsr_e), .clk(clk), .q(wgsr_m), .si(), .so(), .se(se)); dff_s wgsr_m2w(.din(wgsr_vld_m), .clk(clk), .q(wgsr_w), .si(), .so(), .se(se)); dff_s wgsr_w2w2(.din(wgsr_vld_w), .clk(clk), .q(wgsr_w2), .si(), .so(), .se(se)); assign thr_w2[3] = (tid_w2[1:0] == 2'b11); assign thr_w2[2] = (tid_w2[1:0] == 2'b10); assign thr_w2[1] = (tid_w2[1:0] == 2'b01); assign thr_w2[0] = (tid_w2[1:0] == 2'b00); assign ctl_dp_thr_e[3] = (tid_e[1:0] == 2'b11); assign ctl_dp_thr_e[2] = (tid_e[1:0] == 2'b10); assign ctl_dp_thr_e[1] = (tid_e[1:0] == 2'b01); assign ctl_dp_thr_e[0] = (tid_e[1:0] == 2'b00); assign thr_fp[3] = (tid[1:0] == 2'b11); assign thr_fp[2] = (tid[1:0] == 2'b10); assign thr_fp[1] = (tid[1:0] == 2'b01); assign thr_fp[0] = (tid[1:0] == 2'b00); assign t0_siam_w2 = thr_fp[0] & siam & visop_w2_vld; assign t0_gsr_wsr_w2 = thr_w2[0] & wgsr_vld_w2; assign t0_alignaddr_w2 = thr_fp[0] & alignaddr & visop_w2_vld; assign t0_rnd_wen_l = ~(t0_gsr_wsr_w2 | t0_siam_w2); assign t0_align_wen_l = ~(t0_gsr_wsr_w2 | t0_alignaddr_w2); assign t1_siam_w2 = thr_fp[1] & siam & visop_w2_vld; assign t1_gsr_wsr_w2 = thr_w2[1] & wgsr_vld_w2; assign t1_alignaddr_w2 = thr_fp[1] & alignaddr & visop_w2_vld; assign t1_rnd_wen_l = ~(t1_gsr_wsr_w2 | t1_siam_w2); assign t1_align_wen_l = ~(t1_gsr_wsr_w2 | t1_alignaddr_w2); assign t2_siam_w2 = thr_fp[2] & siam & visop_w2_vld; assign t2_gsr_wsr_w2 = thr_w2[2] & wgsr_vld_w2; assign t2_alignaddr_w2 = thr_fp[2] & alignaddr & visop_w2_vld; assign t2_rnd_wen_l = ~(t2_gsr_wsr_w2 | t2_siam_w2); assign t2_align_wen_l = ~(t2_gsr_wsr_w2 | t2_alignaddr_w2); assign t3_siam_w2 = thr_fp[3] & siam & visop_w2_vld; assign t3_gsr_wsr_w2 = thr_w2[3] & wgsr_vld_w2; assign t3_alignaddr_w2 = thr_fp[3] & alignaddr & visop_w2_vld; assign t3_rnd_wen_l = ~(t3_gsr_wsr_w2 | t3_siam_w2); assign t3_align_wen_l = ~(t3_gsr_wsr_w2 | t3_alignaddr_w2); assign ctl_dp_gsr_wsr_w2[3:0] = {t3_gsr_wsr_w2,t2_gsr_wsr_w2,t1_gsr_wsr_w2,t0_gsr_wsr_w2}; // Storage flops and muxes mux3ds #(3) t0_rnd_mux(.dout(t0_gsr_rnd_next[2:0]), .in0(t0_gsr_rnd[2:0]), .in1(wgsr_rnd_w2[2:0]), .in2(siam_rnd[2:0]), .sel0(t0_rnd_wen_l), .sel1(t0_gsr_wsr_w2), .sel2(t0_siam_w2)); mux3ds #(3) t0_align_mux(.dout(t0_gsr_align_next[2:0]), .in0(t0_gsr_align[2:0]), .in1(wgsr_align_offset_w2[2:0]), .in2(align_addr_data_w2[2:0]), .sel0(t0_align_wen_l), .sel1(t0_gsr_wsr_w2), .sel2(t0_alignaddr_w2)); mux3ds #(3) t1_rnd_mux(.dout(t1_gsr_rnd_next[2:0]), .in0(t1_gsr_rnd[2:0]), .in1(wgsr_rnd_w2[2:0]), .in2(siam_rnd[2:0]), .sel0(t1_rnd_wen_l), .sel1(t1_gsr_wsr_w2), .sel2(t1_siam_w2)); mux3ds #(3) t1_align_mux(.dout(t1_gsr_align_next[2:0]), .in0(t1_gsr_align[2:0]), .in1(wgsr_align_offset_w2[2:0]), .in2(align_addr_data_w2[2:0]), .sel0(t1_align_wen_l), .sel1(t1_gsr_wsr_w2), .sel2(t1_alignaddr_w2)); mux3ds #(3) t2_rnd_mux(.dout(t2_gsr_rnd_next[2:0]), .in0(t2_gsr_rnd[2:0]), .in1(wgsr_rnd_w2[2:0]), .in2(siam_rnd[2:0]), .sel0(t2_rnd_wen_l), .sel1(t2_gsr_wsr_w2), .sel2(t2_siam_w2)); mux3ds #(3) t2_align_mux(.dout(t2_gsr_align_next[2:0]), .in0(t2_gsr_align[2:0]), .in1(wgsr_align_offset_w2[2:0]), .in2(align_addr_data_w2[2:0]), .sel0(t2_align_wen_l), .sel1(t2_gsr_wsr_w2), .sel2(t2_alignaddr_w2)); mux3ds #(3) t3_rnd_mux(.dout(t3_gsr_rnd_next[2:0]), .in0(t3_gsr_rnd[2:0]), .in1(wgsr_rnd_w2[2:0]), .in2(siam_rnd[2:0]), .sel0(t3_rnd_wen_l), .sel1(t3_gsr_wsr_w2), .sel2(t3_siam_w2)); mux3ds #(3) t3_align_mux(.dout(t3_gsr_align_next[2:0]), .in0(t3_gsr_align[2:0]), .in1(wgsr_align_offset_w2[2:0]), .in2(align_addr_data_w2[2:0]), .sel0(t3_align_wen_l), .sel1(t3_gsr_wsr_w2), .sel2(t3_alignaddr_w2)); dffr_s #(6) t0_gsr_dff(.din({t0_gsr_rnd_next[2:0], t0_gsr_align_next[2:0]}), .clk(clk), .q({t0_gsr_rnd[2:0], t0_gsr_align[2:0]}), .se(se), .si(), .so(), .rst(reset)); dffr_s #(6) t1_gsr_dff(.din({t1_gsr_rnd_next[2:0], t1_gsr_align_next[2:0]}), .clk(clk), .q({t1_gsr_rnd[2:0], t1_gsr_align[2:0]}), .se(se), .si(), .so(), .rst(reset)); dffr_s #(6) t2_gsr_dff(.din({t2_gsr_rnd_next[2:0], t2_gsr_align_next[2:0]}), .clk(clk), .q({t2_gsr_rnd[2:0], t2_gsr_align[2:0]}), .se(se), .si(), .so(), .rst(reset)); dffr_s #(6) t3_gsr_dff(.din({t3_gsr_rnd_next[2:0], t3_gsr_align_next[2:0]}), .clk(clk), .q({t3_gsr_rnd[2:0], t3_gsr_align[2:0]}), .se(se), .si(), .so(), .rst(reset)); dffre_s #(3) siam_rnd_dff(.din(ifu_ffu_rnd_e[2:0]), .clk(clk), .q(siam_rnd), .se(se), .si(), .so(), .rst(reset), .en(visop_e)); dff_s #(3) align_offset_dff1(.din(exu_ffu_gsr_align_m[2:0]), .clk(clk), .q(wgsr_align_offset_w[2:0]), .se(se), .si(), .so()); dff_s #(3) align_offset_dff2(.din(wgsr_align_offset_w[2:0]), .clk(clk), .q(wgsr_align_offset_w2[2:0]), .se(se), .si(), .so()); dff_s #(3) rnd_dff1(.din(exu_ffu_gsr_rnd_m[2:0]), .clk(clk), .q(wgsr_rnd_w[2:0]), .se(se), .si(), .so()); dff_s #(3) rnd_dff2(.din(wgsr_rnd_w[2:0]), .clk(clk), .q(wgsr_rnd_w2[2:0]), .se(se), .si(), .so()); assign wsr_data_m[36:0] = {exu_ffu_gsr_mask_m[31:0], exu_ffu_gsr_scale_m[4:0]}; dff_s #(37) wsr_data_m2w(.din(wsr_data_m[36:0]), .clk(clk), .q(wsr_data_w[36:0]), .se(se), .si(), .so()); dff_s #(37) wsr_data_w2w2(.din(wsr_data_w[36:0]), .clk(clk), .q(ctl_dp_wsr_data_w2[36:0]), .se(se), .si(), .so()); endmodule // sparc_ffu_ctl_visctl