// ========== Copyright Header Begin ========================================== // // OpenSPARC T1 Processor File: fpu_div_exp_dp.v // Copyright (c) 2006 Sun Microsystems, Inc. All Rights Reserved. // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES. // // The above named program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public // License version 2 as published by the Free Software Foundation. // // The above named program is distributed in the hope that it will be // useful, but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public // License along with this work; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. // // ========== Copyright Header End ============================================ /////////////////////////////////////////////////////////////////////////////// // // Divide pipeline exponent datapath. // /////////////////////////////////////////////////////////////////////////////// module fpu_div_exp_dp ( inq_in1, inq_in2, d1stg_step, d234stg_fdiv, div_expadd1_in1_dbl, div_expadd1_in1_sng, div_expadd1_in2_exp_in2_dbl, div_expadd1_in2_exp_in2_sng, d3stg_fdiv, d4stg_fdiv, div_shl_cnt, div_exp1_expadd1, div_exp1_0835, div_exp1_0118, div_exp1_zero, div_exp1_load, div_expadd2_in1_exp_out, d5stg_fdiva, d5stg_fdivd, d5stg_fdivs, d6stg_fdiv, d7stg_fdiv, div_expadd2_no_decr_inv, div_expadd2_cin, div_exp_out_expadd2, div_exp_out_expadd22_inv, div_exp_out_of, d7stg_to_0_inv, d7stg_fdivd, div_exp_out_exp_out, d7stg_rndup_inv, div_frac_add_52_inv, div_exp_out_load, fdiv_clken_l, rclk, div_exp1, div_expadd2_12, div_exp_out, div_exp_outa, se, si, so ); input [62:52] inq_in1; // request operand 1 to op pipes input [62:52] inq_in2; // request operand 2 to op pipes input d1stg_step; // divide pipe load input d234stg_fdiv; // select line to div_expadd1 input div_expadd1_in1_dbl; // select line to div_expadd1 input div_expadd1_in1_sng; // select line to div_expadd1 input div_expadd1_in2_exp_in2_dbl; // select line to div_expadd1 input div_expadd1_in2_exp_in2_sng; //select line to div_expadd1 input d3stg_fdiv; // divide operation- divide stage 3 input d4stg_fdiv; // divide operation- divide stage 4 input [5:0] div_shl_cnt; // divide left shift amount input div_exp1_expadd1; // select line to div_exp1 input div_exp1_0835; // select line to div_exp1 input div_exp1_0118; // select line to div_exp1 input div_exp1_zero; // select line to div_exp1 input div_exp1_load; // load enable to div_exp1 input div_expadd2_in1_exp_out; // select line to div_expadd2 input d5stg_fdiva; // divide operation- divide stage 5 input d5stg_fdivd; // divide double- divide stage 5 input d5stg_fdivs; // divide single- divide stage 5 input d6stg_fdiv; // divide operation- divide stage 6 input d7stg_fdiv; // divide operation- divide stage 7 input div_expadd2_no_decr_inv; // no exponent decrement input div_expadd2_cin; // carry in to 2nd exponent adder input div_exp_out_expadd2; // select line to div_exp_out input div_exp_out_expadd22_inv; // select line to div_exp_out input div_exp_out_of; // overflow to exponent output input d7stg_to_0_inv; // result to infinity on overflow input d7stg_fdivd; // divide double- divide stage 7 input div_exp_out_exp_out; // select line to div_exp_out input d7stg_rndup_inv; // no rounding increment input div_frac_add_52_inv; // div_frac_add bit[52] inverted input div_exp_out_load; // load enable to div_exp_out input fdiv_clken_l; // div pipe clk enable - asserted low input rclk; // global clock output [12:0] div_exp1; // divide exponent- intermediate value output div_expadd2_12; // divide exponent- 2nd adder output output [12:0] div_exp_out; // divide exponent output output [10:0] div_exp_outa; // divide exponent output- buffered copy input se; // scan_enable input si; // scan in output so; // scan out wire [10:0] div_exp_in1; wire [10:0] div_exp_in2; wire [12:0] div_expadd1_in1; wire [12:0] div_expadd1_in2; wire [12:0] div_expadd1; wire [12:0] div_exp1_in; wire [12:0] div_exp1; wire [12:0] div_expadd2_in1; wire [12:0] div_expadd2_in2; wire [12:0] div_expadd2; wire div_expadd2_12; wire [12:0] div_exp_out_in; wire [12:0] div_exp_out; wire [10:0] div_exp_outa; wire se_l; assign se_l = ~se; clken_buf ckbuf_div_exp_dp ( .clk(clk), .rclk(rclk), .enb_l(fdiv_clken_l), .tmb_l(se_l) ); /////////////////////////////////////////////////////////////////////////////// // // Divide exponent inputs. // /////////////////////////////////////////////////////////////////////////////// dffe_s #(11) i_div_exp_in1 ( .din (inq_in1[62:52]), .en (d1stg_step), .clk (clk), .q (div_exp_in1[10:0]), .se (se), .si (), .so () ); dffe_s #(11) i_div_exp_in2 ( .din (inq_in2[62:52]), .en (d1stg_step), .clk (clk), .q (div_exp_in2[10:0]), .se (se), .si (), .so () ); /////////////////////////////////////////////////////////////////////////////// // // Divide exponent adder in the front end of the divide pipe. // /////////////////////////////////////////////////////////////////////////////// assign div_expadd1_in1[12:0]= ({13{d234stg_fdiv}} & div_exp1[12:0]) | ({13{div_expadd1_in1_dbl}} & {2'b0, div_exp_in1[10:0]}) | ({13{div_expadd1_in1_sng}} & {5'b0, div_exp_in1[10:3]}); assign div_expadd1_in2[12:0]= ({13{div_expadd1_in1_dbl}} & 13'h0436) | ({13{div_expadd1_in1_sng}} & 13'h0099) | ({13{div_expadd1_in2_exp_in2_dbl}} & (~{2'b0, div_exp_in2[10:0]})) | ({13{div_expadd1_in2_exp_in2_sng}} & (~{5'b0, div_exp_in2[10:3]})) | ({13{d3stg_fdiv}} & (~{7'b0, div_shl_cnt[5:0]})) | ({13{d4stg_fdiv}} & {7'b0, div_shl_cnt[5:0]}); assign div_expadd1[12:0]= (div_expadd1_in1[12:0] + div_expadd1_in2[12:0]); assign div_exp1_in[12:0]= ({13{div_exp1_expadd1}} & div_expadd1[12:0]) | ({13{div_exp1_0835}} & 13'h0835) | ({13{div_exp1_0118}} & 13'h0118) | ({13{div_exp1_zero}} & 13'h0000); dffe_s #(13) i_div_exp1 ( .din (div_exp1_in[12:0]), .en (div_exp1_load), .clk (clk), .q (div_exp1[12:0]), .se (se), .si (), .so () ); /////////////////////////////////////////////////////////////////////////////// // // Divide exponent adder in the back end of the divide pipe. // /////////////////////////////////////////////////////////////////////////////// assign div_expadd2_in1[12:0]= ({13{div_expadd2_in1_exp_out}} & div_exp_out[12:0]) | ({13{d5stg_fdiva}} & div_exp1[12:0]); assign div_expadd2_in2[12:0]= ({13{d5stg_fdiva}} & {7'h7f, d5stg_fdivs, 1'b0, d5stg_fdivd, d5stg_fdivs, 1'b1, d5stg_fdivs}) | ({13{d6stg_fdiv}} & {13{div_expadd2_no_decr_inv}}) | ({13{d7stg_fdiv}} & 13'h0000); assign div_expadd2[12:0]= (div_expadd2_in1[12:0] + div_expadd2_in2[12:0] + {12'b0, div_expadd2_cin}); assign div_expadd2_12 = div_expadd2[12]; assign div_exp_out_in[12:0]= ({13{(div_exp_out_expadd2 && (!(div_frac_add_52_inv && div_exp_out_expadd22_inv)))}} & div_expadd2[12:0]) | ({13{div_exp_out_of}} & {2'b00, {3{d7stg_fdivd}}, 7'h7f, d7stg_to_0_inv}) | ({13{(div_exp_out_exp_out && (div_frac_add_52_inv || d7stg_rndup_inv))}} & div_exp_out[12:0]); dffe_s #(13) i_div_exp_out ( .din (div_exp_out_in[12:0]), .en (div_exp_out_load), .clk (clk), .q (div_exp_out[12:0]), .se (se), .si (), .so () ); assign div_exp_outa[10:0]= div_exp_out[10:0]; endmodule