// ========== Copyright Header Begin ========================================== // // OpenSPARC T1 Processor File: bw_r_tlb.v // Copyright (c) 2006 Sun Microsystems, Inc. All Rights Reserved. // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES. // // The above named program is free software; you can redistribute it and/or // modify it under the terms of the GNU General Public // License version 2 as published by the Free Software Foundation. // // The above named program is distributed in the hope that it will be // useful, but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details. // // You should have received a copy of the GNU General Public // License along with this work; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. // // ========== Copyright Header End ============================================ /////////////////////////////////////////////////////////////////////// /* // Description: Common TLB for Instruction Fetch and Load/Stores */ //////////////////////////////////////////////////////////////////////// // Global header file includes //////////////////////////////////////////////////////////////////////// `include "sys.h" // system level definition file which contains the // time scale definition //////////////////////////////////////////////////////////////////////// // Local header file includes / local defines //////////////////////////////////////////////////////////////////////// `include "lsu.h" //FPGA_SYN enables all FPGA related modifications `ifdef FPGA_SYN `define FPGA_SYN_TLB `endif `ifdef FPGA_SYN_TLB `ifdef FPGA_SYN_8TLB `define TLB_ENTRIES 8 `define TLB_INDEX_WIDTH 3 `else `ifdef FPGA_SYN_16TLB `define TLB_ENTRIES 16 `define TLB_INDEX_WIDTH 4 `else `ifdef FPGA_SYN_32TLB `define TLB_ENTRIES 32 `define TLB_INDEX_WIDTH 5 `else `define TLB_ENTRIES 64 `define TLB_INDEX_WIDTH 6 `endif `endif `endif module bw_r_tlb ( /*AUTOARG*/ // Outputs tlb_rd_tte_tag, tlb_rd_tte_data, tlb_pgnum, tlb_pgnum_crit, tlb_cam_hit, cache_way_hit, cache_hit, so, // Inputs tlb_cam_vld, tlb_cam_key, tlb_cam_pid, tlb_demap_key, tlb_addr_mask_l, tlb_ctxt, tlb_wr_vld, tlb_wr_tte_tag, tlb_wr_tte_data, tlb_rd_tag_vld, tlb_rd_data_vld, tlb_rw_index, tlb_rw_index_vld, tlb_demap, tlb_demap_auto, tlb_demap_all, cache_ptag_w0, cache_ptag_w1, cache_ptag_w2, cache_ptag_w3, cache_set_vld, tlb_bypass_va, tlb_bypass, se, si, hold, adj, arst_l, rst_soft_l, rclk, rst_tri_en ) ; input tlb_cam_vld ; // ld/st requires xlation. input [40:0] tlb_cam_key ; // cam data for loads/stores;includes vld // CHANGE : add real bit for cam. input [2:0] tlb_cam_pid ; // NEW: pid for cam. input [40:0] tlb_demap_key ; // cam data for demap; includes vlds. // CHANGE : add real bit for demap input tlb_addr_mask_l ; // address masking occurs input [12:0] tlb_ctxt ; // context for cam xslate/demap. input tlb_wr_vld; // write to tlb. input [58:0] tlb_wr_tte_tag; // CHANGE:tte tag to be written (55+4-1) // R(+1b),PID(+3b),G(-1b). input [42:0] tlb_wr_tte_data; // tte data to be written. // No change(!!!) - G bit becomes spare input tlb_rd_tag_vld ; // read tag input tlb_rd_data_vld ; // read data input [5:0] tlb_rw_index ; // index to read/write tlb. input tlb_rw_index_vld ; // indexed write else use algorithm. input tlb_demap ; // demap : page/ctxt/all/auto. input tlb_demap_auto ; // demap is of type auto input tlb_demap_all; // demap-all operation : encoded separately. input [29:0] cache_ptag_w0; // way1 30b(D)/29b(I) tag. input [29:0] cache_ptag_w1; // way2 30b(D)/29b(I) tag. input [29:0] cache_ptag_w2; // way0 30b(D)/29b(I) tag. input [29:0] cache_ptag_w3; // way3 30b(D)/29b(I) tag. input [3:0] cache_set_vld; // set vld-4 ways input [12:10] tlb_bypass_va; // bypass va.other va bits from cam-data input tlb_bypass; // bypass tlb xslation input se ; // scan-enable ; unused input si ; // scan data in ; unused input hold ; // scan hold signal input [7:0] adj ; // self-time adjustment ; unused input arst_l ; // synchronous for tlb ; unused input rst_soft_l ; // software reset - asi input rclk; input rst_tri_en ; output [58:0] tlb_rd_tte_tag; // CHANGE: tte tag read from tlb. output [42:0] tlb_rd_tte_data; // tte data read from tlb. // Need two ports for tlb_pgnum - critical and non-critical. output [39:10] tlb_pgnum ; // bypass or xslated pgnum output [39:10] tlb_pgnum_crit ; // bypass or xslated pgnum - critical output tlb_cam_hit ; // xlation hits in tlb. output [3:0] cache_way_hit; // tag comparison results. output cache_hit; // tag comparison result - 'or' of above. //output tlb_writeable ; // tlb can be written in current cycle. output so ; // scan data out ; unused wire [53:0] tlb_cam_data ; wire [58:0] wr_tte_tag ; // CHANGE wire [42:0] wr_tte_data ; wire [29:3] phy_pgnum_m; wire [29:0] pgnum_m; wire [`TLB_ENTRIES-1:0] used ; wire tlb_not_writeable ; wire [40:25] tlb_cam_key_masked ; wire [26:0] tlb_cam_comp_key ; wire cam_vld ; wire demap_other ; wire [3:0] cache_way_hit ; wire [`TLB_ENTRIES-1:0] mismatch; reg tlb_not_writeable_d1 ; reg tlb_writeable ; wire [`TLB_ENTRIES-1:0] tlb_entry_locked ; wire [`TLB_ENTRIES-1:0] cam_hit ; wire [`TLB_ENTRIES-1:0] demap_hit ; reg [`TLB_ENTRIES-1:0] ademap_hit ; wire [58:0] rd_tte_tag ; // CHANGE wire [42:0] rd_tte_data ; reg [42:0] tlb_rd_tte_data ; reg cam_vld_tmp ; reg [2:0] cam_pid ; reg [53:0] cam_data ; reg demap_auto, demap_other_tmp, demap_all ; reg [`TLB_ENTRIES-1:0] tlb_entry_vld ; wire [`TLB_ENTRIES-1:0] tlb_entry_used ; reg [`TLB_ENTRIES-1:0] tlb_entry_replace ; reg [`TLB_ENTRIES-1:0] tlb_entry_replace_d2 ; reg [29:0] pgnum_g ; reg [3:0] cache_set_vld_g; reg [29:0] cache_ptag_w0_g,cache_ptag_w1_g; reg [29:0] cache_ptag_w2_g,cache_ptag_w3_g; reg [`TLB_ENTRIES-1:0] rw_wdline ; reg rd_tag; reg rd_data; reg wr_vld_tmp; reg [`TLB_INDEX_WIDTH-1:0] rw_index; reg rw_index_vld; wire [29:0] vrtl_pgnum_m; wire bypass ; wire wr_vld ; integer i,j,k,l,m,n,p,r,s,t,u,w; `define CAM_CTXT_12_0_HI 12 // 13b ctxt `define CAM_CTXT_12_0_LO 0 //========================================================================================= // What's Left : //========================================================================================= // Scan Insertion - scan to be ignored in formal verification for now. //========================================================================================= // Design Notes. //========================================================================================= // - Supported Demap Operations - By Page, By Context, All But // Locked, Autodemap, Invalidate-All i.e., reset. Demap Partition is // not supported - it is mapped to demap-all by logic. // - Interpretation of demap inputs // - tlb_demap - this is used to signal demap by page, by ctxt // ,all, and autodemap. // - tlb_demap_ctxt - If a demap_by_ctxt operation is occuring then // this signal and tlb_demap must be active. // - tlb_demap_all - demap all operation. If a demap_all operation is // occuring, then tlb_demap_all must be asserted with tlb_demap. // - Reset is similar to demap-all except that *all* entries // are invalidated. The action is initiated by software. The reset occurs // on the negedge and is synchronous with the clk. // - TTE Tag and Data // - The TTE tag and data can be read together. Each will have its // own bus and the muxing will occur externally. The tag needs to // be read on a data request to supply the valid bit. // - The TTE tag and data can be written together. // - The cam hit is a separate output signal based on the // the match signals. // - Read/Write may occur based on supplied index. If not valid // then use replacement way determined by algorithm to write. // - Only write can use replacement way determined by algorithm. // - Data is formatted appr. on read or write in the MMU. // - The TLB will generate a signal which reports whether the // tlb can be filled in the current cycle or not. // **Physical Tag Comparison** // For I-SIDE, comparison is of 28b, whereas for D-side, comparison is of 29b. The actual // comparison, due to legacy, is for 30b. // For the I-TLB, va[11:10] must be hardwired to the same value as the lsb of the 4 tags // at the port level. Since the itag it only 28b, add two least significant bits to extend it to 30b. // Similarly, for the dside, va[10] needs to be made same. // **Differentiating among Various TLB Operations** // Valid bits are now associated with the key to allow selective incorporation of // match results. The 5 valid bits are : v4(b47-28),v3(b27-22),v2(21-16),v1(b15-13) // and Gk(G bit for auto-demap). The rules of use are : // - cam: v4-v1 are set high. G=~cam_real=0/1. // - demap_by_page : v4-v1 are set high. G=1. cam_real=0. // - demap_by_ctxt : v4-v1 are low. G=1. cam_real=0 // - demap_all : v4-v1 are don't-care. G=x. cam_real=x // - autodemap : v4-v1 are based on page size of incoming tte. G=~cam_real=0/1. // Note : Gk is now used only to void a context match on a Real Translation. // In general, if a valid bit is low then the corresponding va field will not take // part in the match. Similarly, for the ctxt, if Gk=1, the ctxt will participate // in the match. // // Demap Table (For Satya) : // Note : To include a context match, Gk must be set to 1. //-------------------------------------------------------------------------------------------------------- //tlb_demap tlb_demap_all tlb_ctxt Gk Vk4 Vk3 Vk2 Vk1 Real Operation //-------------------------------------------------------------------------------------------------------- //0 x x x x x x x 0 No demap operation //1 0 0 1 1 1 1 1 0 Demap by page //1 0 0 1 1 0 0 0 0/1 256M demap(auto demap) //1 0 0 0 1 0 0 0 0 256M demap(auto demap) (*Illgl*) //1 0 0 1 1 1 0 0 0/1 4M demap(auto demap) //1 0 0 0 1 1 0 0 0 4M demap(auto demap) (*Illgl*) //1 0 0 1 1 1 1 0 0/1 64k demap(auto demap) //1 0 0 0 1 1 1 0 0 64k demap(auto demap) (*Illgl*) //1 0 0 1 1 1 1 1 0/1 8k demap(auto demap) //1 0 0 0 1 1 1 1 0 8k demap(auto demap) (*Illgl*) //1 0 1 1 0 0 0 0 0 demap by ctxt //1 1 x x x x x x 0 demap_all //------------------------------------------------------------------------------------------ //----- //All other are illegal combinations // //========================================================================================= // Changes related to Hypervisor/Legacy Compatibility //========================================================================================= // // - Add PID. PID does not effect demap-all. Otherwise it is included in cam, other demap // operations and auto-demap. // - Add R. Real translation ignores context. This is controlled externally by Gk. // - Remove G bit for tte. Input remains in demap-key/cam-key to allow for disabling // of context match Real Translation // - Final Page Size support - 8KB,64KB,4M,256M // - SPARC_HPV_EN has been defined to enable new tlb design support. // Issues : // -Max ptag size is now 28b. Satya, will this help the speed at all. I doubt it ! //========================================================================================= // Miscellaneous //========================================================================================= wire clk; assign clk = rclk; wire async_reset, sync_reset ; assign async_reset = ~arst_l ; // hardware assign sync_reset = (~rst_soft_l & ~rst_tri_en) ; // software wire rw_disable ; // INNO - wr/rd gated off. Note required as rst_tri_en is // asserted, but implemented in addition in schematic. assign rw_disable = ~arst_l | rst_tri_en ; reg [`TLB_INDEX_WIDTH-1:0] cam_hit_encoded; integer ii; reg cam_hit_any; always @(cam_hit) begin cam_hit_any = 1'b0; cam_hit_encoded = {`TLB_INDEX_WIDTH{1'b0}}; for(ii=0;ii<`TLB_ENTRIES;ii=ii+1) begin if(cam_hit[ii]) begin cam_hit_encoded = ii; cam_hit_any = 1'b1; end end end reg cam_hit_any_or_bypass; always @(posedge clk) cam_hit_any_or_bypass <= cam_hit_any | bypass; //========================================================================================= // Stage Data //========================================================================================= // Apply address masking assign tlb_cam_key_masked[40:25] = {16{tlb_addr_mask_l}} & tlb_cam_key[`CAM_VA_47_28_HI:`CAM_VA_47_28_LO+4] ; // Reconstitute cam data CHANGE : add additional bit for real mapping assign tlb_cam_data[53:13] = tlb_demap ? tlb_demap_key[40:0] : {tlb_cam_key_masked[40:25],tlb_cam_key[`CAM_VA_47_28_LO+3:0]} ; assign tlb_cam_comp_key[26:0] = tlb_demap ? {tlb_demap_key[32:21], tlb_demap_key[19:14],tlb_demap_key[12:7], tlb_demap_key[5:3]} : {tlb_cam_key_masked[32:25],tlb_cam_key[24:21], tlb_cam_key[19:14],tlb_cam_key[12:7],tlb_cam_key[5:3]} ; assign tlb_cam_data[12:0] = tlb_ctxt[12:0] ; // These signals are flow-thru. assign wr_tte_tag[58:0] = tlb_wr_tte_tag[58:0] ; // CHANGE assign wr_tte_data[42:0] = tlb_wr_tte_data[42:0] ; // CHANGE(SATYA) - Currently the rw_index/rw_index_vld are shared by both reads // and writes. However, writes are done in the cycle of broadcast, whereas // the reads are done a cycle later, as given in the model(incorrect) // They have to be treated uniformly. To make the model work, I've assumed the read/write // are done in the cycle the valids are broadcast. always @ (posedge clk) begin if (hold) begin cam_pid[2:0] <= cam_pid[2:0] ; cam_vld_tmp <= cam_vld_tmp ; cam_data[53:0] <= cam_data[53:0] ; demap_other_tmp <= demap_other_tmp ; demap_auto <= demap_auto ; demap_all <= demap_all ; wr_vld_tmp <= wr_vld_tmp ; rd_tag <= rd_tag ; rd_data <= rd_data ; rw_index_vld <= rw_index_vld ; rw_index[`TLB_INDEX_WIDTH-1:0] <= rw_index[`TLB_INDEX_WIDTH-1:0] ; end else begin cam_pid[2:0] <= tlb_cam_pid[2:0] ; cam_vld_tmp <= tlb_cam_vld ; cam_data[53:0] <= tlb_cam_data[53:0] ; demap_other_tmp <= tlb_demap ; demap_auto <= tlb_demap_auto ; demap_all <= tlb_demap_all ; wr_vld_tmp <= tlb_wr_vld ; rd_tag <= tlb_rd_tag_vld ; rd_data <= tlb_rd_data_vld ; rw_index_vld <= tlb_rw_index_vld ; rw_index[`TLB_INDEX_WIDTH-1:0] <= tlb_rw_index[`TLB_INDEX_WIDTH-1:0] ; end end // INNO - gate cam,demap,wr with rst_tri_en. reg rst_tri_en_lat; always @ (clk) rst_tri_en_lat = rst_tri_en; assign cam_vld = cam_vld_tmp & ~rst_tri_en_lat ; assign demap_other = demap_other_tmp & ~rst_tri_en ; assign wr_vld = wr_vld_tmp & ~rst_tri_en ; //========================================================================================= // Generate Write Wordlines //========================================================================================= assign tlb_rd_tte_tag[58:0] = rd_tte_tag[58:0] ; // CHANGE // Stage to next cycle. always @ (posedge clk) begin tlb_rd_tte_data[42:0] <= rd_tte_data[42:0] ; end //========================================================================================= // CAM/DEMAP STLB for xlation //========================================================================================= // Demap and CAM operation are mutually exclusive. always @ ( negedge clk ) begin for (n=0;n<`TLB_ENTRIES;n=n+1) begin if (demap_auto & demap_other) ademap_hit[n] = (~mismatch[n] & demap_other & tlb_entry_vld[n]) ; end end // always assign tlb_cam_hit = |cam_hit[`TLB_ENTRIES-1:0] ; // Change tlb_entry_vld handling for multi-threaded tlb writes. // A write is always preceeded by an autodemap. The intent is to make the result of autodemap // (clearing of vld bit if hit) invisible until write occurs. In the same cycle that the write // occurs, the vld bit for an entry will be cleared if there is an autodemap hit. The write // and admp action may even be to same entry. The write must dominate. There is no need to // clear the dmp latches after the write/clear has occurred as the subsequent admp will set // up new state in the latches. // Define valid bit based on write/demap/reset. always @ (/*AUTOSENSE*/rd_data or rd_tag or rw_index or rw_index_vld or wr_vld_tmp) begin for (i=0;i<`TLB_ENTRIES;i=i+1) if ((rw_index[`TLB_INDEX_WIDTH-1:0] == i) & ((wr_vld_tmp & rw_index_vld) | rd_tag | rd_data)) rw_wdline[i] = 1'b1 ; else rw_wdline[i] = 1'b0 ; end always @ (negedge clk) begin for (r=0;r<`TLB_ENTRIES;r=r+1) begin // for if (((rw_index_vld & rw_wdline[r]) | (~rw_index_vld & tlb_entry_replace_d2[r])) & wr_vld & ~rw_disable) tlb_entry_vld[r] <= wr_tte_tag[`STLB_TAG_V] ; // write else begin if (ademap_hit[r] & wr_vld) // autodemap specifically tlb_entry_vld[r] <= 1'b0 ; end if ((demap_hit[r] & ~demap_auto) | sync_reset) // non-auto-demap, reset tlb_entry_vld[r] <= 1'b0 ; if(async_reset) tlb_entry_vld[r] <= 1'b0 ; end // for end //========================================================================================= // TAG COMPARISON //========================================================================================= reg [30:0] va_tag_plus ; // Stage to m always @(posedge clk) begin // INNO - add hold to this input if (hold) va_tag_plus[30:0] <= va_tag_plus[30:0] ; else va_tag_plus[30:0] <= {tlb_cam_comp_key[26:0],tlb_bypass_va[12:10],tlb_bypass}; end assign vrtl_pgnum_m[29:0] = va_tag_plus[30:1] ; assign bypass = va_tag_plus[0] ; // Mux to bypass va or form pa tag based on tte-data. assign phy_pgnum_m[29:3] = {rd_tte_data[`STLB_DATA_PA_39_28_HI:`STLB_DATA_PA_39_28_LO], rd_tte_data[`STLB_DATA_PA_27_22_HI:`STLB_DATA_PA_27_22_LO], rd_tte_data[`STLB_DATA_PA_21_16_HI:`STLB_DATA_PA_21_16_LO], rd_tte_data[`STLB_DATA_PA_15_13_HI:`STLB_DATA_PA_15_13_LO]}; // Derive the tlb-based physical address. assign pgnum_m[2:0] = vrtl_pgnum_m[2:0]; assign pgnum_m[5:3] = (~rd_tte_data[`STLB_DATA_15_13_SEL] & ~bypass) ? phy_pgnum_m[5:3] : vrtl_pgnum_m[5:3] ; assign pgnum_m[11:6] = (~rd_tte_data[`STLB_DATA_21_16_SEL] & ~bypass) ? phy_pgnum_m[11:6] : vrtl_pgnum_m[11:6] ; assign pgnum_m[17:12] = (~rd_tte_data[`STLB_DATA_27_22_SEL] & ~bypass) ? phy_pgnum_m[17:12] : vrtl_pgnum_m[17:12] ; assign pgnum_m[29:18] = ~bypass ? phy_pgnum_m[29:18] : vrtl_pgnum_m[29:18]; // Stage to g // Flop tags in tlb itself and do comparison immediately after rising edge. // Similarly stage va/pa tag to g always @(posedge clk) begin pgnum_g[29:0] <= pgnum_m[29:0]; // rm hold on these inputs. cache_set_vld_g[3:0] <= cache_set_vld[3:0] ; cache_ptag_w0_g[29:0] <= cache_ptag_w0[29:0] ; cache_ptag_w1_g[29:0] <= cache_ptag_w1[29:0] ; cache_ptag_w2_g[29:0] <= cache_ptag_w2[29:0] ; cache_ptag_w3_g[29:0] <= cache_ptag_w3[29:0] ; end // Need to stage by a cycle where used. assign tlb_pgnum[39:10] = pgnum_g[29:0] ; // Same cycle as cam - meant for one load on critical path assign tlb_pgnum_crit[39:10] = pgnum_m[29:0] ; assign cache_way_hit[0] = (cache_ptag_w0_g[29:0] == pgnum_g[29:0]) & cache_set_vld_g[0] & cam_hit_any_or_bypass; assign cache_way_hit[1] = (cache_ptag_w1_g[29:0] == pgnum_g[29:0]) & cache_set_vld_g[1] & cam_hit_any_or_bypass; assign cache_way_hit[2] = (cache_ptag_w2_g[29:0] == pgnum_g[29:0]) & cache_set_vld_g[2] & cam_hit_any_or_bypass; assign cache_way_hit[3] = (cache_ptag_w3_g[29:0] == pgnum_g[29:0]) & cache_set_vld_g[3] & cam_hit_any_or_bypass; assign cache_hit = |cache_way_hit[3:0]; //========================================================================================= // TLB ENTRY REPLACEMENT //========================================================================================= // A single Used bit is used to track the replacement state of each entry. // Only an unused entry can be replaced. // An Unused entry is : // - an invalid entry // - a valid entry which has had its Used bit cleared. // - on write of a valid entry, the Used bit is set. // - The Used bit of a valid entry is cleared if all // entries have their Used bits set and the entry itself is not Locked. // A locked entry should always appear to be Used. // A single priority-encoder is required to evaluate the used status. Priority is static // and used entry0 is of the highest priority if unused. // Timing : // Used bit gets updated by cam-hit or hit on negedge. // After Used bit gets updated off negedge, the replacement entry can be generated in // Phase2. In parallel, it is determined whether all Used bits are set or not. If // so, then they are cleared on the next negedge with the replacement entry generated // in the related Phase1 // Choosing replacement entry // Replacement entry is integer k assign tlb_not_writeable = &used[`TLB_ENTRIES-1:0] ; /* // Used bit can be set because of write or because of cam-hit. always @(negedge clk) begin for (s=0;s<`TLB_ENTRIES;s=s+1) begin if (cam_hit[s]) tlb_entry_used[s] <= 1'b1; end // Clear on following edge if necessary. // CHANGE(SATYA) : tlb_entry_used qualified with valid needs to be used to determine // whether the Used bits are to be cleared. This allows invalid entries created // by a demap to be used for replacement. Else we will ignore these entries // for replacement if (tlb_not_writeable) begin for (t=0;t<`TLB_ENTRIES;t=t+1) begin if (~tlb_entry_locked[t]) tlb_entry_used[t] <= 1'b0; end end end */ // Determine whether entry should be squashed. assign used[`TLB_ENTRIES-1:0] = tlb_entry_used[`TLB_ENTRIES-1:0] & tlb_entry_vld[`TLB_ENTRIES-1:0] ; // Based on updated Used state, generate replacement entry. // So, replacement entries can be generated on a cycle-by-cycle basis. //always @(/*AUTOSENSE*/squash or used) reg [`TLB_ENTRIES-1:0] tlb_entry_replace_d1; reg tlb_replace_flag; always @(/*AUTOSENSE*/used) begin tlb_replace_flag=1'b0; tlb_entry_replace_d1 = {`TLB_ENTRIES-1{1'b0}}; // Priority is given to entry0 for (u=0;u<`TLB_ENTRIES;u=u+1) begin if(~tlb_replace_flag & ~used[u]) begin tlb_entry_replace_d1[u] = ~used[u] ; tlb_replace_flag=1'b1; end end if(~tlb_replace_flag) begin tlb_entry_replace_d1[`TLB_ENTRIES-1] = 1'b1; end end always @(posedge clk) begin // named in this manner to keep arch model happy. tlb_entry_replace <= tlb_entry_replace_d1 ; end // INNO - 2 stage delay before update is visible always @(posedge clk) begin tlb_entry_replace_d2 <= tlb_entry_replace ; end reg [`TLB_INDEX_WIDTH-1:0] tlb_index_a1; reg [`TLB_INDEX_WIDTH-1:0] tlb_index; wire tlb_index_vld_a1 = |tlb_entry_replace; reg tlb_index_vld; integer jj; always @(tlb_entry_replace) begin tlb_index_a1 = {`TLB_INDEX_WIDTH{1'b0}}; for(jj=0;jj<`TLB_ENTRIES;jj=jj+1) if(tlb_entry_replace[jj]) tlb_index_a1 = jj; end always @(posedge clk) begin tlb_index <= tlb_index_a1; //use instead of tlb_entry_replace_d2; tlb_index_vld <= tlb_index_vld_a1; end //========================================================================================= // TLB WRITEABLE DETECTION //========================================================================================= // 2-cycles later, tlb become writeable always @(posedge clk) begin tlb_not_writeable_d1 <= tlb_not_writeable ; end always @(posedge clk) begin tlb_writeable <= ~tlb_not_writeable_d1 ; end bw_r_tlb_tag_ram bw_r_tlb_tag_ram ( .rd_tag(rd_tag), .rw_index_vld(rw_index_vld), .wr_vld_tmp(wr_vld_tmp), .clk(clk), .rw_index(rw_index), .tlb_index(tlb_index), .tlb_index_vld(tlb_index_vld), .rw_disable(rw_disable), .rst_tri_en(rst_tri_en), .wr_tte_tag(wr_tte_tag), .tlb_entry_vld(tlb_entry_vld), .tlb_entry_used(tlb_entry_used), .tlb_entry_locked(tlb_entry_locked), .rd_tte_tag(rd_tte_tag), .mismatch(mismatch), .tlb_writeable(tlb_writeable), .cam_vld(cam_vld), .wr_vld(wr_vld), .cam_data(cam_data), .cam_hit(cam_hit), .cam_pid(cam_pid), .demap_all(demap_all), .demap_hit(demap_hit), .demap_other(demap_other) ); bw_r_tlb_data_ram bw_r_tlb_data_ram ( .rd_data(rd_data), .rw_index_vld(rw_index_vld), .wr_vld_tmp(wr_vld_tmp), .clk(clk), .cam_vld(cam_vld), .cam_index(cam_hit_encoded), .cam_hit_any(cam_hit_any), .rw_index(rw_index), .tlb_index(tlb_index), .tlb_index_vld(tlb_index_vld), .rw_disable(rw_disable), .rst_tri_en(rst_tri_en), .wr_tte_data(wr_tte_data), .rd_tte_data(rd_tte_data), .wr_vld(wr_vld) ); endmodule module bw_r_tlb_tag_ram( rd_tag, rw_index_vld, wr_vld_tmp, clk, rw_index, tlb_index, tlb_index_vld, rw_disable, rst_tri_en, wr_tte_tag, tlb_entry_vld, tlb_entry_used, tlb_entry_locked, rd_tte_tag, mismatch, tlb_writeable, wr_vld, cam_vld, cam_data, cam_hit, cam_pid, demap_all, demap_other, demap_hit); input rd_tag; input rw_index_vld; input wr_vld_tmp; input clk; input [`TLB_INDEX_WIDTH-1:0] rw_index; input [`TLB_INDEX_WIDTH-1:0] tlb_index; input tlb_index_vld; input rw_disable; input rst_tri_en; input [58:0] wr_tte_tag; input [`TLB_ENTRIES-1:0] tlb_entry_vld; input tlb_writeable; input wr_vld; input [2:0] cam_pid; input demap_all; input demap_other; input [53:0] cam_data; input cam_vld ; output [`TLB_ENTRIES-1:0] cam_hit ; output [`TLB_ENTRIES-1:0] demap_hit ; output [`TLB_ENTRIES-1:0] tlb_entry_used; output [`TLB_ENTRIES-1:0] tlb_entry_locked; reg [`TLB_ENTRIES-1:0] tlb_entry_locked ; output [58:0] rd_tte_tag; reg [58:0] rd_tte_tag; output [`TLB_ENTRIES-1:0] mismatch; reg [`TLB_ENTRIES-1:0] sat; reg [`TLB_ENTRIES-1:0] mismatch; reg [`TLB_ENTRIES-1:0] cam_hit ; reg [`TLB_ENTRIES-1:0] demap_all_but_locked_hit ; reg [58:0] tag ; // CHANGE reg [`TLB_ENTRIES-1:0] mismatch_va_b47_28; reg [`TLB_ENTRIES-1:0] mismatch_va_b27_22; reg [`TLB_ENTRIES-1:0] mismatch_va_b21_16; reg [`TLB_ENTRIES-1:0] mismatch_va_b15_13; reg [`TLB_ENTRIES-1:0] mismatch_ctxt; reg [`TLB_ENTRIES-1:0] mismatch_pid; reg [`TLB_ENTRIES-1:0] mismatch_type; reg [`TLB_ENTRIES-1:0] tlb_entry_used ; integer i,j,n,m, w, p, k, s, t; reg [58:0] tte_tag_ram [`TLB_ENTRIES-1:0] /* synthesis syn_ramstyle = block_ram syn_ramstyle = no_rw_check */ ; reg [58:0] tmp_tag ; wire wren = rw_index_vld & wr_vld_tmp & ~rw_disable; wire tlben = tlb_index_vld & ~rw_index_vld & wr_vld_tmp & ~rw_disable; wire [`TLB_INDEX_WIDTH-1:0] wr_addr = wren ? rw_index : tlb_index; always @ (negedge clk) begin //========================================================================================= // Write TLB //========================================================================================= if(wren | tlben) begin tte_tag_ram[wr_addr] <= wr_tte_tag[58:0]; tlb_entry_used[wr_addr] <= wr_tte_tag[`STLB_TAG_U]; tlb_entry_locked[wr_addr] = wr_tte_tag[`STLB_TAG_L]; end else begin tlb_entry_used <= (tlb_entry_used | cam_hit) & (tlb_entry_locked | ~{`TLB_ENTRIES{~tlb_writeable & ~cam_vld & ~wr_vld & ~rd_tag & ~rst_tri_en}}) ; end //========================================================================================= // Read STLB //========================================================================================= if(rd_tag & ~rw_disable) begin tmp_tag <= tte_tag_ram[rw_index]; end end // always always @(posedge clk) begin if(rd_tag & ~rw_disable) rd_tte_tag[58:0] = {tmp_tag[58:27], tlb_entry_vld[rw_index], tlb_entry_locked[rw_index], tlb_entry_used[rw_index], tmp_tag[23:0]}; else if(wren | tlben) rd_tte_tag[58:0] = wr_tte_tag[58:0]; end reg [58:0] tte_tag_ram2 [`TLB_ENTRIES-1:0]; always @ (negedge clk) begin if(wren | tlben) tte_tag_ram2[wr_addr] <= wr_tte_tag[58:0]; end always @ (cam_data or cam_pid or cam_vld or demap_all or demap_other or tlb_entry_vld) begin for (n=0;n<`TLB_ENTRIES;n=n+1) begin tag[58:0] = tte_tag_ram2[n] ; // CHANGE mismatch_va_b47_28[n] = (tag[`STLB_TAG_VA_47_28_HI:`STLB_TAG_VA_47_28_LO] != cam_data[`CAM_VA_47_28_HI+13:`CAM_VA_47_28_LO+13]); mismatch_va_b27_22[n] = (tag[`STLB_TAG_VA_27_22_HI:`STLB_TAG_VA_27_22_LO] != cam_data[`CAM_VA_27_22_HI+13:`CAM_VA_27_22_LO+13]); mismatch_va_b21_16[n] = (tag[`STLB_TAG_VA_21_16_HI:`STLB_TAG_VA_21_16_LO] != cam_data[`CAM_VA_21_16_HI+13:`CAM_VA_21_16_LO+13]) ; mismatch_va_b15_13[n] = (tag[`STLB_TAG_VA_15_13_HI:`STLB_TAG_VA_15_13_LO] != cam_data[`CAM_VA_15_13_HI+13:`CAM_VA_15_13_LO+13]) ; mismatch_ctxt[n] = (tag[`STLB_TAG_CTXT_12_0_HI:`STLB_TAG_CTXT_12_0_LO] != cam_data[`CAM_CTXT_12_0_HI:`CAM_CTXT_12_0_LO]) ; mismatch_pid[n] = (tag[`STLB_TAG_PID_HI:`STLB_TAG_PID_LO] != cam_pid[2:0]) ; mismatch_type[n] = (tag[`STLB_TAG_R] ^ cam_data[`CAM_REAL_V+13]); mismatch[n] = (mismatch_va_b47_28[n] & cam_data[`CAM_VA_47_28_V+13]) | (mismatch_va_b27_22[n] & tag[`STLB_TAG_VA_27_22_V] & cam_data[`CAM_VA_27_22_V+13]) | (mismatch_va_b21_16[n] & tag[`STLB_TAG_VA_21_16_V] & cam_data[`CAM_VA_21_16_V+13]) | (mismatch_va_b15_13[n] & tag[`STLB_TAG_VA_15_13_V] & cam_data[`CAM_VA_15_13_V+13]) | (mismatch_ctxt[n] & ~cam_data[`CAM_CTXT_GK+13]) | (mismatch_type[n] & ~demap_all) | mismatch_pid[n] ; // pid always included in mismatch calculations demap_all_but_locked_hit[n] = ~tag[`STLB_TAG_L] & demap_all ; cam_hit[n] = ~mismatch[n] & cam_vld & tlb_entry_vld[n] ; end end // always assign demap_hit = demap_all ? ~mismatch & demap_all_but_locked_hit & tlb_entry_vld & {`TLB_ENTRIES{demap_other}} : ~mismatch & tlb_entry_vld & {`TLB_ENTRIES{demap_other}}; endmodule module bw_r_tlb_data_ram(rd_data, rw_index_vld, wr_vld_tmp, clk, cam_vld, rw_index, tlb_index, tlb_index_vld, rw_disable, rst_tri_en, wr_tte_data, rd_tte_data, cam_index, cam_hit_any, wr_vld); input rd_data; input rw_index_vld; input wr_vld_tmp; input clk; input [(6 - 1):0] rw_index; input [(6 - 1):0] tlb_index; input tlb_index_vld; input [(6 - 1):0] cam_index; input cam_hit_any; input rw_disable; input rst_tri_en; input cam_vld; input [42:0] wr_tte_data; input wr_vld; output [42:0] rd_tte_data; wire [42:0] rd_tte_data; reg [42:0] tte_data_ram[(64 - 1):0]; wire [5:0] wr_addr = (rw_index_vld & wr_vld_tmp) ? rw_index :tlb_index; wire wr_en = ((rw_index_vld & wr_vld_tmp) & (~rw_disable)) | (((tlb_index_vld & (~rw_index_vld)) & wr_vld_tmp) & (~rw_disable)); always @(negedge clk) begin if (wr_en) tte_data_ram[wr_addr] <= wr_tte_data[42:0]; end wire [5:0] rd_addr = rd_data ? rw_index : cam_index; wire rd_en = (rd_data & (~rw_disable)) | ((cam_vld & (~rw_disable))); reg [42:0] rd_tte_data_temp; always @(negedge clk) begin //required for simulation; otherwise regression fails... if((cam_vld & (~rw_disable)) & (!cam_hit_any)) begin rd_tte_data_temp <= 43'bx; end else if (rd_en) begin rd_tte_data_temp[42:0] <= tte_data_ram[rd_addr]; end end reg rdwe; reg [42:0] wr_tte_data_d; always @(negedge clk) begin wr_tte_data_d <= wr_tte_data; end always @(negedge clk) begin if(wr_en) rdwe <= 1'b1; else if(rd_en) rdwe <= 1'b0; end assign rd_tte_data = rdwe ? wr_tte_data_d : rd_tte_data_temp; endmodule `else module bw_r_tlb ( /*AUTOARG*/ // Outputs tlb_rd_tte_tag, tlb_rd_tte_data, tlb_pgnum, tlb_pgnum_crit, tlb_cam_hit, cache_way_hit, cache_hit, so, // Inputs tlb_cam_vld, tlb_cam_key, tlb_cam_pid, tlb_demap_key, tlb_addr_mask_l, tlb_ctxt, tlb_wr_vld, tlb_wr_tte_tag, tlb_wr_tte_data, tlb_rd_tag_vld, tlb_rd_data_vld, tlb_rw_index, tlb_rw_index_vld, tlb_demap, tlb_demap_auto, tlb_demap_all, cache_ptag_w0, cache_ptag_w1, cache_ptag_w2, cache_ptag_w3, cache_set_vld, tlb_bypass_va, tlb_bypass, se, si, hold, adj, arst_l, rst_soft_l, rclk, rst_tri_en ) ; input tlb_cam_vld ; // ld/st requires xlation. input [40:0] tlb_cam_key ; // cam data for loads/stores;includes vld // CHANGE : add real bit for cam. input [2:0] tlb_cam_pid ; // NEW: pid for cam. input [40:0] tlb_demap_key ; // cam data for demap; includes vlds. // CHANGE : add real bit for demap input tlb_addr_mask_l ; // address masking occurs input [12:0] tlb_ctxt ; // context for cam xslate/demap. input tlb_wr_vld; // write to tlb. input [58:0] tlb_wr_tte_tag; // CHANGE:tte tag to be written (55+4-1) // R(+1b),PID(+3b),G(-1b). input [42:0] tlb_wr_tte_data; // tte data to be written. // No change(!!!) - G bit becomes spare input tlb_rd_tag_vld ; // read tag input tlb_rd_data_vld ; // read data input [5:0] tlb_rw_index ; // index to read/write tlb. input tlb_rw_index_vld ; // indexed write else use algorithm. input tlb_demap ; // demap : page/ctxt/all/auto. input tlb_demap_auto ; // demap is of type auto input tlb_demap_all; // demap-all operation : encoded separately. input [29:0] cache_ptag_w0; // way1 30b(D)/29b(I) tag. input [29:0] cache_ptag_w1; // way2 30b(D)/29b(I) tag. input [29:0] cache_ptag_w2; // way0 30b(D)/29b(I) tag. input [29:0] cache_ptag_w3; // way3 30b(D)/29b(I) tag. input [3:0] cache_set_vld; // set vld-4 ways input [12:10] tlb_bypass_va; // bypass va.other va bits from cam-data input tlb_bypass; // bypass tlb xslation input se ; // scan-enable ; unused input si ; // scan data in ; unused input hold ; // scan hold signal input [7:0] adj ; // self-time adjustment ; unused input arst_l ; // synchronous for tlb ; unused input rst_soft_l ; // software reset - asi input rclk; input rst_tri_en ; output [58:0] tlb_rd_tte_tag; // CHANGE: tte tag read from tlb. output [42:0] tlb_rd_tte_data; // tte data read from tlb. // Need two ports for tlb_pgnum - critical and non-critical. output [39:10] tlb_pgnum ; // bypass or xslated pgnum output [39:10] tlb_pgnum_crit ; // bypass or xslated pgnum - critical output tlb_cam_hit ; // xlation hits in tlb. output [3:0] cache_way_hit; // tag comparison results. output cache_hit; // tag comparison result - 'or' of above. //output tlb_writeable ; // tlb can be written in current cycle. output so ; // scan data out ; unused wire [53:0] tlb_cam_data ; wire [58:0] wr_tte_tag ; // CHANGE wire [42:0] wr_tte_data ; wire [29:3] phy_pgnum_m; wire [29:0] pgnum_m; wire [63:0] used ; wire tlb_not_writeable ; wire [40:25] tlb_cam_key_masked ; wire [26:0] tlb_cam_comp_key ; wire cam_vld ; wire demap_other ; wire [3:0] cache_way_hit ; reg tlb_not_writeable_d1 ; reg tlb_writeable ; reg [58:0] tte_tag_ram [63:0] ; // CHANGE reg [42:0] tte_data_ram [63:0] ; reg [63:0] tlb_entry_vld ; reg [63:0] tlb_entry_locked ; reg [63:0] ademap_hit ; reg [58:0] rd_tte_tag ; // CHANGE reg [42:0] rd_tte_data ; reg [58:0] tlb_rd_tte_tag ; // CHANGE reg [42:0] tlb_rd_tte_data ; reg cam_vld_tmp ; reg [2:0] cam_pid ; reg [53:0] cam_data ; reg demap_auto, demap_other_tmp, demap_all ; reg [63:0] mismatch ; reg [63:0] cam_hit ; reg [63:0] demap_hit ; reg [63:0] demap_all_but_locked_hit ; reg [63:0] mismatch_va_b47_28 ; reg [63:0] mismatch_va_b27_22 ; reg [63:0] mismatch_va_b21_16 ; reg [63:0] mismatch_va_b15_13 ; reg [63:0] mismatch_ctxt ; reg [63:0] mismatch_pid ; reg [58:0] tag ; // CHANGE reg [63:0] rw_wdline ; reg [63:0] tlb_entry_used ; reg [63:0] tlb_entry_replace ; reg [63:0] tlb_entry_replace_d2 ; reg [29:0] pgnum_g ; reg [3:0] cache_set_vld_g; reg [29:0] cache_ptag_w0_g,cache_ptag_w1_g; reg [29:0] cache_ptag_w2_g,cache_ptag_w3_g; reg wr_vld_tmp; reg rd_tag; reg rd_data; reg rw_index_vld; reg [5:0] rw_index; reg [63:0] sat ; wire [29:0] vrtl_pgnum_m; wire bypass ; wire wr_vld ; integer i,j,k,l,m,n,p,r,s,t,u,w; /*AUTOWIRE*/ // Beginning of automatic wires (for undeclared instantiated-module outputs) // End of automatics // Some bits are removed from the tag and data. // 'U' must be defined as a '1' on a write. // 'L' required for demap all function. // Do not need an internal valid bit for va range 47:22. // These bits are always valid for a page. // // TTE STLB_TAG // //`define STLB_TAG_PID_HI 58 : NEW PID - bit2 //`define STLB_TAG_PID_LO 56 : NEW PID - bit0 //`define STLB_TAG_R 55 : NEW Real bit //`define STLB_TAG_PARITY 54 // Parity kept in same posn to avoid having //`define STLB_TAG_VA_47_28_HI 53 // to redo interface //`define STLB_TAG_VA_47_28_LO 34 //`define STLB_TAG_VA_27_22_HI 33 //`define STLB_TAG_VA_27_22_LO 28 //`define STLB_TAG_27_22_V 27 //`define STLB_TAG_V 26 : valid for entry. Write of 0 resets it. //`define STLB_TAG_L 25 //`define STLB_TAG_U 24 //`define STLB_TAG_VA_21_16_HI 23 //`define STLB_TAG_VA_21_16_LO 18 //`define STLB_TAG_VA_21_16_V 17 //`define STLB_TAG_VA_15_13_HI 16 //`define STLB_TAG_VA_15_13_LO 14 //`define STLB_TAG_VA_15_13_V 13 //`define STLB_TAG_CTXT_12_0_HI 12 // removed Global bit //`define STLB_TAG_CTXT_12_0_LO 0 //// Total - 59b //// //// TTE STLB_DATA //// //// Soft[12:7] & Soft2[58:50] are removed. //// Diag[49:41] are removed. Used bit used for Diag[0] on read. //// CV is included for software correctness. //// PA<40> is removed as it is not used. //// G/L present in data even though present in tag : can't read out simultaneously. // (Unfortunately this is no longer correct. For data read, tag is also read // simultaneously to get valid bit, used bits). //`define STLB_DATA_PARITY 42 //`define STLB_DATA_PA_39_28_HI 41 // CHANGE //`define STLB_DATA_PA_39_28_LO 30 //`define STLB_DATA_PA_27_22_HI 29 // CHANGE //`define STLB_DATA_PA_27_22_LO 24 //`define STLB_DATA_27_22_SEL 23 //`define STLB_DATA_PA_21_16_HI 22 // CHANGE //`define STLB_DATA_PA_21_16_LO 17 //`define STLB_DATA_21_16_SEL 16 //`define STLB_DATA_PA_15_13_HI 15 //`define STLB_DATA_PA_15_13_LO 13 //`define STLB_DATA_15_13_SEL 12 //`define STLB_DATA_V 11 : static, does not get modified. //`define STLB_DATA_NFO 10 //`define STLB_DATA_IE 9 //`define STLB_DATA_L 8 : added for read. //`define STLB_DATA_CP 7 //`define STLB_DATA_CV 6 //`define STLB_DATA_E 5 //`define STLB_DATA_P 4 //`define STLB_DATA_W 3 //`define STLB_DATA_SPARE_HI 2 : Global bit has been removed //`define STLB_DATA_SPARE_LO 0 // Total - 43b // Valid bits for key(tlb_cam_key/tlb_demap_key). // Total - 41b //`define CAM_VA_47_28_HI 40 //`define CAM_VA_47_28_LO 21 //`define CAM_VA_47_28_V 20 // b47-28 participate in match //`define CAM_VA_27_22_HI 19 //`define CAM_VA_27_22_LO 14 //`define CAM_VA_27_22_V 13 // b27-22 participate in match //`define CAM_VA_21_16_HI 12 //`define CAM_VA_21_16_LO 7 //`define CAM_VA_21_16_V 6 // b21-16 participate in match //`define CAM_VA_15_13_HI 5 //`define CAM_VA_15_13_LO 3 //`define CAM_VA_15_13_V 2 // b15-13 participate in match //`define CAM_CTXT_GK 1 // Context participates in match //`define CAM_REAL_V 0 // cam/demap applies to real mapping // ctxt port is different from cam key port even though both are // required for cam. (tlb_ctxt) // If Gk is set then ctxt will not participate in match. // Total - 14b `define CAM_CTXT_12_0_HI 12 // 13b ctxt `define CAM_CTXT_12_0_LO 0 //========================================================================================= // What's Left : //========================================================================================= // Scan Insertion - scan to be ignored in formal verification for now. //========================================================================================= // Design Notes. //========================================================================================= // - Supported Demap Operations - By Page, By Context, All But // Locked, Autodemap, Invalidate-All i.e., reset. Demap Partition is // not supported - it is mapped to demap-all by logic. // - Interpretation of demap inputs // - tlb_demap - this is used to signal demap by page, by ctxt // ,all, and autodemap. // - tlb_demap_ctxt - If a demap_by_ctxt operation is occuring then // this signal and tlb_demap must be active. // - tlb_demap_all - demap all operation. If a demap_all operation is // occuring, then tlb_demap_all must be asserted with tlb_demap. // - Reset is similar to demap-all except that *all* entries // are invalidated. The action is initiated by software. The reset occurs // on the negedge and is synchronous with the clk. // - TTE Tag and Data // - The TTE tag and data can be read together. Each will have its // own bus and the muxing will occur externally. The tag needs to // be read on a data request to supply the valid bit. // - The TTE tag and data can be written together. // - The cam hit is a separate output signal based on the // the match signals. // - Read/Write may occur based on supplied index. If not valid // then use replacement way determined by algorithm to write. // - Only write can use replacement way determined by algorithm. // - Data is formatted appr. on read or write in the MMU. // - The TLB will generate a signal which reports whether the // tlb can be filled in the current cycle or not. // **Physical Tag Comparison** // For I-SIDE, comparison is of 28b, whereas for D-side, comparison is of 29b. The actual // comparison, due to legacy, is for 30b. // For the I-TLB, va[11:10] must be hardwired to the same value as the lsb of the 4 tags // at the port level. Since the itag it only 28b, add two least significant bits to extend it to 30b. // Similarly, for the dside, va[10] needs to be made same. // **Differentiating among Various TLB Operations** // Valid bits are now associated with the key to allow selective incorporation of // match results. The 5 valid bits are : v4(b47-28),v3(b27-22),v2(21-16),v1(b15-13) // and Gk(G bit for auto-demap). The rules of use are : // - cam: v4-v1 are set high. G=~cam_real=0/1. // - demap_by_page : v4-v1 are set high. G=1. cam_real=0. // - demap_by_ctxt : v4-v1 are low. G=1. cam_real=0 // - demap_all : v4-v1 are don't-care. G=x. cam_real=x // - autodemap : v4-v1 are based on page size of incoming tte. G=~cam_real=0/1. // Note : Gk is now used only to void a context match on a Real Translation. // In general, if a valid bit is low then the corresponding va field will not take // part in the match. Similarly, for the ctxt, if Gk=1, the ctxt will participate // in the match. // // Demap Table (For Satya) : // Note : To include a context match, Gk must be set to 1. //-------------------------------------------------------------------------------------------------------- //tlb_demap tlb_demap_all tlb_ctxt Gk Vk4 Vk3 Vk2 Vk1 Real Operation //-------------------------------------------------------------------------------------------------------- //0 x x x x x x x 0 No demap operation //1 0 0 1 1 1 1 1 0 Demap by page //1 0 0 1 1 0 0 0 0/1 256M demap(auto demap) //1 0 0 0 1 0 0 0 0 256M demap(auto demap) (*Illgl*) //1 0 0 1 1 1 0 0 0/1 4M demap(auto demap) //1 0 0 0 1 1 0 0 0 4M demap(auto demap) (*Illgl*) //1 0 0 1 1 1 1 0 0/1 64k demap(auto demap) //1 0 0 0 1 1 1 0 0 64k demap(auto demap) (*Illgl*) //1 0 0 1 1 1 1 1 0/1 8k demap(auto demap) //1 0 0 0 1 1 1 1 0 8k demap(auto demap) (*Illgl*) //1 0 1 1 0 0 0 0 0 demap by ctxt //1 1 x x x x x x 0 demap_all //------------------------------------------------------------------------------------------ //----- //All other are illegal combinations // //========================================================================================= // Changes related to Hypervisor/Legacy Compatibility //========================================================================================= // // - Add PID. PID does not effect demap-all. Otherwise it is included in cam, other demap // operations and auto-demap. // - Add R. Real translation ignores context. This is controlled externally by Gk. // - Remove G bit for tte. Input remains in demap-key/cam-key to allow for disabling // of context match Real Translation // - Final Page Size support - 8KB,64KB,4M,256M // - SPARC_HPV_EN has been defined to enable new tlb design support. // Issues : // -Max ptag size is now 28b. Satya, will this help the speed at all. I doubt it ! //========================================================================================= // Miscellaneous //========================================================================================= wire clk; assign clk = rclk; wire async_reset, sync_reset ; assign async_reset = ~arst_l ; // hardware assign sync_reset = (~rst_soft_l & ~rst_tri_en) ; // software wire rw_disable ; // INNO - wr/rd gated off. Note required as rst_tri_en is // asserted, but implemented in addition in schematic. assign rw_disable = ~arst_l | rst_tri_en ; //========================================================================================= // Stage Data //========================================================================================= // Apply address masking assign tlb_cam_key_masked[40:25] = {16{tlb_addr_mask_l}} & tlb_cam_key[`CAM_VA_47_28_HI:`CAM_VA_47_28_LO+4] ; // Reconstitute cam data CHANGE : add additional bit for real mapping assign tlb_cam_data[53:13] = tlb_demap ? tlb_demap_key[40:0] : {tlb_cam_key_masked[40:25],tlb_cam_key[`CAM_VA_47_28_LO+3:0]} ; assign tlb_cam_comp_key[26:0] = tlb_demap ? {tlb_demap_key[32:21], tlb_demap_key[19:14],tlb_demap_key[12:7], tlb_demap_key[5:3]} : {tlb_cam_key_masked[32:25],tlb_cam_key[24:21], tlb_cam_key[19:14],tlb_cam_key[12:7],tlb_cam_key[5:3]} ; assign tlb_cam_data[12:0] = tlb_ctxt[12:0] ; // These signals are flow-thru. assign wr_tte_tag[58:0] = tlb_wr_tte_tag[58:0] ; // CHANGE assign wr_tte_data[42:0] = tlb_wr_tte_data[42:0] ; // CHANGE(SATYA) - Currently the rw_index/rw_index_vld are shared by both reads // and writes. However, writes are done in the cycle of broadcast, whereas // the reads are done a cycle later, as given in the model(incorrect) // They have to be treated uniformly. To make the model work, I've assumed the read/write // are done in the cycle the valids are broadcast. always @ (posedge clk) begin if (hold) begin cam_pid[2:0] <= cam_pid[2:0] ; cam_vld_tmp <= cam_vld_tmp ; cam_data[53:0] <= cam_data[53:0] ; demap_other_tmp <= demap_other_tmp ; demap_auto <= demap_auto ; demap_all <= demap_all ; wr_vld_tmp <= wr_vld_tmp ; rd_tag <= rd_tag ; rd_data <= rd_data ; rw_index_vld <= rw_index_vld ; rw_index[5:0] <= rw_index[5:0] ; end else begin cam_pid[2:0] <= tlb_cam_pid[2:0] ; cam_vld_tmp <= tlb_cam_vld ; cam_data[53:0] <= tlb_cam_data[53:0] ; demap_other_tmp <= tlb_demap ; demap_auto <= tlb_demap_auto ; demap_all <= tlb_demap_all ; wr_vld_tmp <= tlb_wr_vld ; rd_tag <= tlb_rd_tag_vld ; rd_data <= tlb_rd_data_vld ; rw_index_vld <= tlb_rw_index_vld ; rw_index[5:0] <= tlb_rw_index[5:0] ; end end // INNO - gate cam,demap,wr with rst_tri_en. reg rst_tri_en_lat; always @ (clk) rst_tri_en_lat = rst_tri_en; assign cam_vld = cam_vld_tmp & ~rst_tri_en_lat ; assign demap_other = demap_other_tmp & ~rst_tri_en ; assign wr_vld = wr_vld_tmp & ~rst_tri_en ; //========================================================================================= // Generate Write Wordlines //========================================================================================= // Based on static rw index // This generates the wordlines for a read/write to the tlb based on index. Wordlines for // the write based on replacement alg. are muxed in later. always @ (/*AUTOSENSE*/rd_data or rd_tag or rw_index or rw_index_vld or wr_vld_tmp) begin for (i=0;i<64;i=i+1) if ((rw_index[5:0] == i) & ((wr_vld_tmp & rw_index_vld) | rd_tag | rd_data)) rw_wdline[i] = 1'b1 ; else rw_wdline[i] = 1'b0 ; end //========================================================================================= // Write TLB //========================================================================================= reg [58:0] tmp_tag ; reg [42:0] tmp_data ; // Currently TLB_TAG and TLB_DATA RAMs are written in the B phase. // Used bit is set on write in later code as it is also effected by read of tlb. always @ (negedge clk) begin for (j=0;j<64;j=j+1) if (((rw_index_vld & rw_wdline[j]) | (~rw_index_vld & tlb_entry_replace_d2[j])) & wr_vld_tmp & ~rw_disable) begin if (~rst_tri_en) begin tte_tag_ram[j] <= wr_tte_tag[58:0]; // CHANGE tte_data_ram[j] <= wr_tte_data[42:0]; //tlb_entry_vld[j] <= wr_tte_tag[`STLB_TAG_V] ; tlb_entry_used[j] <= wr_tte_tag[`STLB_TAG_U] ; tlb_entry_locked[j] = wr_tte_tag[`STLB_TAG_L] ; // write-thru rd_tte_tag[58:0] <= wr_tte_tag[58:0] ; // CHANGE rd_tte_data[42:0] <= wr_tte_data[42:0]; end else begin tmp_tag[58:0]=tte_tag_ram[j]; // use non-blocking tmp_data[42:0]=tte_data_ram[j]; // INNO - read wins. rd_tte_tag[58:0] <= {tmp_tag[58:27], tlb_entry_vld[j],tlb_entry_locked[j], tlb_entry_used[j], tmp_tag[23:0]} ; rd_tte_data[42:0] <= {tmp_data[42:12],tmp_data[11:0]} ; end end //========================================================================================= // Read STLB //========================================================================================= for (m=0;m<64;m=m+1) if (rw_wdline[m] & (rd_tag | rd_data) & ~rw_disable) begin tmp_tag = tte_tag_ram[m] ; tmp_data = tte_data_ram[m] ; if (rd_tag) rd_tte_tag[58:0] <= // CHANGE - Bug 2185 {tmp_tag[58:27], tlb_entry_vld[m],tlb_entry_locked[m], tlb_entry_used[m], tmp_tag[23:0]} ; //{tmp_tag[58:29], tlb_entry_vld[m],tlb_entry_locked[m], //tlb_entry_used[m], tmp_tag[25:0]} ; if (rd_data) begin rd_tte_data[42:0] <= {tmp_data[42:12],tmp_data[11:0]} ; end end if (cam_vld & ~rw_disable) begin //Checking for no hit and multiple hits sat = 64'd0; for (w=0;w<64;w=w+1) begin if(cam_hit[w]) begin sat = sat + 64'd1 ; end end // Only one hit occur read the data if(sat == 64'd1) begin for (p=0;p<64;p=p+1) begin if (cam_hit[p]) begin rd_tte_data[42:0] <= tte_data_ram[p] ; end end end else begin // INNO - just to keep the tool happy. // ram cell will not be corrupted. for (k=0;k<64;k=k+1) begin if (cam_hit[k]) tte_data_ram[k] <= 43'bx ; end rd_tte_data[42:0] <= 43'bx ; end end for (s=0;s<64;s=s+1) begin if (cam_hit[s]) tlb_entry_used[s] <= 1'b1; end // Clear on following edge if necessary. // CHANGE(SATYA) : tlb_entry_used qualified with valid needs to be used to determine // whether the Used bits are to be cleared. This allows invalid entries created // by a demap to be used for replacement. Else we will ignore these entries // for replacement //if (tlb_not_writeable) if (~tlb_writeable & ~cam_vld & ~wr_vld & ~rd_tag & ~rst_tri_en) begin for (t=0;t<64;t=t+1) begin //if (~tlb_entry_locked[t]) if (~tlb_entry_locked[t] & ~cam_vld & ~wr_vld) tlb_entry_used[t] <= 1'b0; end end end // Stage to next cycle. always @ (posedge clk) begin tlb_rd_tte_tag[58:0] <= rd_tte_tag[58:0] ; // CHANGE tlb_rd_tte_data[42:0] <= rd_tte_data[42:0] ; end //========================================================================================= // CAM/DEMAP STLB for xlation //========================================================================================= // no_hit logic does not work because it is set in multiple clock // domains and is reset before ever having a chance to be effective //reg no_hit ; // Demap and CAM operation are mutually exclusive. always @ ( negedge clk ) begin for (n=0;n<64;n=n+1) begin /*if (demap_all) begin if (demap_auto & demap_other) ademap_hit[n] = (~mismatch[n] & demap_all_but_locked_hit[n] & demap_other & tlb_entry_vld[n]) ; end else begin */ if (demap_auto & demap_other) ademap_hit[n] = (~mismatch[n] & demap_other & tlb_entry_vld[n]) ; //end end end // always always @ (/*AUTOSENSE*/ /*memory or*/ cam_data or cam_pid or cam_vld or demap_all or demap_other or tlb_entry_vld) begin for (n=0;n<64;n=n+1) begin tag[58:0] = tte_tag_ram[n] ; // CHANGE mismatch_va_b47_28[n] = (tag[`STLB_TAG_VA_47_28_HI:`STLB_TAG_VA_47_28_LO] != cam_data[`CAM_VA_47_28_HI+13:`CAM_VA_47_28_LO+13]); mismatch_va_b27_22[n] = (tag[`STLB_TAG_VA_27_22_HI:`STLB_TAG_VA_27_22_LO] != cam_data[`CAM_VA_27_22_HI+13:`CAM_VA_27_22_LO+13]); mismatch_va_b21_16[n] = (tag[`STLB_TAG_VA_21_16_HI:`STLB_TAG_VA_21_16_LO] != cam_data[`CAM_VA_21_16_HI+13:`CAM_VA_21_16_LO+13]) ; mismatch_va_b15_13[n] = (tag[`STLB_TAG_VA_15_13_HI:`STLB_TAG_VA_15_13_LO] != cam_data[`CAM_VA_15_13_HI+13:`CAM_VA_15_13_LO+13]) ; mismatch_ctxt[n] = (tag[`STLB_TAG_CTXT_12_0_HI:`STLB_TAG_CTXT_12_0_LO] != cam_data[`CAM_CTXT_12_0_HI:`CAM_CTXT_12_0_LO]) ; mismatch_pid[n] = (tag[`STLB_TAG_PID_HI:`STLB_TAG_PID_LO] != cam_pid[2:0]) ; mismatch[n] = (mismatch_va_b47_28[n] & cam_data[`CAM_VA_47_28_V+13]) | (mismatch_va_b27_22[n] & tag[`STLB_TAG_VA_27_22_V] & cam_data[`CAM_VA_27_22_V+13]) | (mismatch_va_b21_16[n] & tag[`STLB_TAG_VA_21_16_V] & cam_data[`CAM_VA_21_16_V+13]) | (mismatch_va_b15_13[n] & tag[`STLB_TAG_VA_15_13_V] & cam_data[`CAM_VA_15_13_V+13]) | (mismatch_ctxt[n] & ~cam_data[`CAM_CTXT_GK+13]) | // mismatch is request type not equal to entry type. types are real/virtual. ((tag[`STLB_TAG_R] ^ cam_data[`CAM_REAL_V+13]) & ~demap_all) | //(mismatch_real[n] & cam_data[`CAM_REAL_V+13]) | mismatch_pid[n] ; // pid always included in mismatch calculations demap_all_but_locked_hit[n] = ~tag[`STLB_TAG_L] & demap_all ; cam_hit[n] = ~mismatch[n] & cam_vld & tlb_entry_vld[n] ; if (demap_all) begin // Satya(10/3) - I've simplified the demap-all equation // Pls confirm that this is okay. Otherwise we will nee // qualifying bits for the pid and r fields. /*demap_hit[n] = (demap_all_but_locked_hit[n] & demap_other) ;*/ demap_hit[n] = (~mismatch[n] & demap_all_but_locked_hit[n] & demap_other & tlb_entry_vld[n]) ; // qualification with demap_auto to prevent ademap_hit from // being cleared. Satya-we could get rid of this. // ademap_hit[n] is a phase A device and needs to be in a clocked always block //if (demap_auto & demap_other & clk) ademap_hit[n] = // (~mismatch[n] & demap_all_but_locked_hit[n] & demap_other // & tlb_entry_vld[n]) ; end else begin demap_hit[n] = (~mismatch[n] & demap_other & tlb_entry_vld[n]) ; // qualification with demap_auto to prevent ademap_hit from // being cleared. Satya-this is the only one we need. //if (demap_auto & demap_other & clk) ademap_hit[n] = // (~mismatch[n] & demap_other & tlb_entry_vld[n]) ; end // no_hit = cam_vld ; end end // always assign tlb_cam_hit = |cam_hit[63:0] ; // Read on CAM hit occurs on negedge. /* MOVED TO COMMON ALWAYS BLOCK always @ (negedge clk) begin if (|cam_hit[63:0]) begin for (p=0;p<64;p=p+1) if (cam_hit[p]) begin rd_tte_data[42:0] <= tte_data_ram[p] ; end // no_hit = 1'b0 ; end // else if (no_hit) begin // rd_tte_data[42:0] <= {43{1'bx}}; // no_hit = 1'b0 ; // end end */ // Change tlb_entry_vld handling for multi-threaded tlb writes. // A write is always preceeded by an autodemap. The intent is to make the result of autodemap // (clearing of vld bit if hit) invisible until write occurs. In the same cycle that the write // occurs, the vld bit for an entry will be cleared if there is an autodemap hit. The write // and admp action may even be to same entry. The write must dominate. There is no need to // clear the dmp latches after the write/clear has occurred as the subsequent admp will set // up new state in the latches. // Define valid bit based on write/demap/reset. always @ (negedge clk) begin for (r=0;r<64;r=r+1) begin // for if (((rw_index_vld & rw_wdline[r]) | (~rw_index_vld & tlb_entry_replace_d2[r])) & wr_vld & ~rw_disable) tlb_entry_vld[r] <= wr_tte_tag[`STLB_TAG_V] ; // write else begin if (ademap_hit[r] & wr_vld) // autodemap specifically tlb_entry_vld[r] <= 1'b0 ; end if ((demap_hit[r] & ~demap_auto) | sync_reset) // non-auto-demap, reset tlb_entry_vld[r] <= 1'b0 ; end // for end // async reset. always @ (async_reset) begin for (l=0;l<64;l=l+1) begin tlb_entry_vld[l] <= 1'b0 ; end end //========================================================================================= // TAG COMPARISON //========================================================================================= reg [30:0] va_tag_plus ; // Stage to m always @(posedge clk) begin // INNO - add hold to this input if (hold) va_tag_plus[30:0] <= va_tag_plus[30:0] ; else va_tag_plus[30:0] <= {tlb_cam_comp_key[26:0],tlb_bypass_va[12:10],tlb_bypass}; end assign vrtl_pgnum_m[29:0] = va_tag_plus[30:1] ; assign bypass = va_tag_plus[0] ; // Mux to bypass va or form pa tag based on tte-data. assign phy_pgnum_m[29:3] = {rd_tte_data[`STLB_DATA_PA_39_28_HI:`STLB_DATA_PA_39_28_LO], rd_tte_data[`STLB_DATA_PA_27_22_HI:`STLB_DATA_PA_27_22_LO], rd_tte_data[`STLB_DATA_PA_21_16_HI:`STLB_DATA_PA_21_16_LO], rd_tte_data[`STLB_DATA_PA_15_13_HI:`STLB_DATA_PA_15_13_LO]}; // Derive the tlb-based physical address. assign pgnum_m[2:0] = vrtl_pgnum_m[2:0]; assign pgnum_m[5:3] = (~rd_tte_data[`STLB_DATA_15_13_SEL] & ~bypass) ? phy_pgnum_m[5:3] : vrtl_pgnum_m[5:3] ; assign pgnum_m[11:6] = (~rd_tte_data[`STLB_DATA_21_16_SEL] & ~bypass) ? phy_pgnum_m[11:6] : vrtl_pgnum_m[11:6] ; assign pgnum_m[17:12] = (~rd_tte_data[`STLB_DATA_27_22_SEL] & ~bypass) ? phy_pgnum_m[17:12] : vrtl_pgnum_m[17:12] ; assign pgnum_m[29:18] = ~bypass ? phy_pgnum_m[29:18] : vrtl_pgnum_m[29:18]; // Stage to g // Flop tags in tlb itself and do comparison immediately after rising edge. // Similarly stage va/pa tag to g always @(posedge clk) begin pgnum_g[29:0] <= pgnum_m[29:0]; // rm hold on these inputs. cache_set_vld_g[3:0] <= cache_set_vld[3:0] ; cache_ptag_w0_g[29:0] <= cache_ptag_w0[29:0] ; cache_ptag_w1_g[29:0] <= cache_ptag_w1[29:0] ; cache_ptag_w2_g[29:0] <= cache_ptag_w2[29:0] ; cache_ptag_w3_g[29:0] <= cache_ptag_w3[29:0] ; end // Need to stage by a cycle where used. assign tlb_pgnum[39:10] = pgnum_g[29:0] ; // Same cycle as cam - meant for one load on critical path assign tlb_pgnum_crit[39:10] = pgnum_m[29:0] ; assign cache_way_hit[0] = (cache_ptag_w0_g[29:0] == pgnum_g[29:0]) & cache_set_vld_g[0]; assign cache_way_hit[1] = (cache_ptag_w1_g[29:0] == pgnum_g[29:0]) & cache_set_vld_g[1]; assign cache_way_hit[2] = (cache_ptag_w2_g[29:0] == pgnum_g[29:0]) & cache_set_vld_g[2]; assign cache_way_hit[3] = (cache_ptag_w3_g[29:0] == pgnum_g[29:0]) & cache_set_vld_g[3]; assign cache_hit = |cache_way_hit[3:0]; //========================================================================================= // TLB ENTRY REPLACEMENT //========================================================================================= // A single Used bit is used to track the replacement state of each entry. // Only an unused entry can be replaced. // An Unused entry is : // - an invalid entry // - a valid entry which has had its Used bit cleared. // - on write of a valid entry, the Used bit is set. // - The Used bit of a valid entry is cleared if all // entries have their Used bits set and the entry itself is not Locked. // A locked entry should always appear to be Used. // A single priority-encoder is required to evaluate the used status. Priority is static // and used entry0 is of the highest priority if unused. // Timing : // Used bit gets updated by cam-hit or hit on negedge. // After Used bit gets updated off negedge, the replacement entry can be generated in // Phase2. In parallel, it is determined whether all Used bits are set or not. If // so, then they are cleared on the next negedge with the replacement entry generated // in the related Phase1 // Choosing replacement entry // Replacement entry is integer k assign tlb_not_writeable = &used[63:0] ; /* // Used bit can be set because of write or because of cam-hit. always @(negedge clk) begin for (s=0;s<64;s=s+1) begin if (cam_hit[s]) tlb_entry_used[s] <= 1'b1; end // Clear on following edge if necessary. // CHANGE(SATYA) : tlb_entry_used qualified with valid needs to be used to determine // whether the Used bits are to be cleared. This allows invalid entries created // by a demap to be used for replacement. Else we will ignore these entries // for replacement if (tlb_not_writeable) begin for (t=0;t<64;t=t+1) begin if (~tlb_entry_locked[t]) tlb_entry_used[t] <= 1'b0; end end end */ // Determine whether entry should be squashed. assign used[63:0] = tlb_entry_used[63:0] & tlb_entry_vld[63:0] ; /*assign squash[0] = 1'b0 ; assign squash[1] = ~used[0] ; assign squash[2] = |(~used[1:0]) ; assign squash[3] = |(~used[2:0]) ; assign squash[4] = |(~used[3:0]) ; assign squash[5] = |(~used[4:0]) ; assign squash[6] = |(~used[5:0]) ; assign squash[7] = |(~used[6:0]) ; assign squash[8] = |(~used[7:0]) ; assign squash[9] = |(~used[8:0]) ; assign squash[10] = |(~used[9:0]) ; assign squash[11] = |(~used[10:0]) ; assign squash[12] = |(~used[11:0]) ; assign squash[13] = |(~used[12:0]) ; assign squash[14] = |(~used[13:0]) ; assign squash[15] = |(~used[14:0]) ; assign squash[16] = |(~used[15:0]) ; assign squash[17] = |(~used[16:0]) ; assign squash[18] = |(~used[17:0]) ; assign squash[19] = |(~used[18:0]) ; assign squash[20] = |(~used[19:0]) ; assign squash[21] = |(~used[20:0]) ; assign squash[22] = |(~used[21:0]) ; assign squash[23] = |(~used[22:0]) ; assign squash[24] = |(~used[23:0]) ; assign squash[25] = |(~used[24:0]) ; assign squash[26] = |(~used[25:0]) ; assign squash[27] = |(~used[26:0]) ; assign squash[28] = |(~used[27:0]) ; assign squash[29] = |(~used[28:0]) ; assign squash[30] = |(~used[29:0]) ; assign squash[31] = |(~used[30:0]) ; assign squash[32] = |(~used[31:0]) ; assign squash[33] = |(~used[32:0]) ; assign squash[34] = |(~used[33:0]) ; assign squash[35] = |(~used[34:0]) ; assign squash[36] = |(~used[35:0]) ; assign squash[37] = |(~used[36:0]) ; assign squash[38] = |(~used[37:0]) ; assign squash[39] = |(~used[38:0]) ; assign squash[40] = |(~used[39:0]) ; assign squash[41] = |(~used[40:0]) ; assign squash[42] = |(~used[41:0]) ; assign squash[43] = |(~used[42:0]) ; assign squash[44] = |(~used[43:0]) ; assign squash[45] = |(~used[44:0]) ; assign squash[46] = |(~used[45:0]) ; assign squash[47] = |(~used[46:0]) ; assign squash[48] = |(~used[47:0]) ; assign squash[49] = |(~used[48:0]) ; assign squash[50] = |(~used[49:0]) ; assign squash[51] = |(~used[50:0]) ; assign squash[52] = |(~used[51:0]) ; assign squash[53] = |(~used[52:0]) ; assign squash[54] = |(~used[53:0]) ; assign squash[55] = |(~used[54:0]) ; assign squash[56] = |(~used[55:0]) ; assign squash[57] = |(~used[56:0]) ; assign squash[58] = |(~used[57:0]) ; assign squash[59] = |(~used[58:0]) ; assign squash[60] = |(~used[59:0]) ; assign squash[61] = |(~used[60:0]) ; assign squash[62] = |(~used[61:0]) ; assign squash[63] = |(~used[62:0]) ; */ // Based on updated Used state, generate replacement entry. // So, replacement entries can be generated on a cycle-by-cycle basis. //always @(/*AUTOSENSE*/squash or used) reg [63:0] tlb_entry_replace_d1; reg tlb_replace_flag; always @(/*AUTOSENSE*/used) begin tlb_replace_flag=1'b0; tlb_entry_replace_d1 = 64'b0; // Priority is given to entry0 for (u=0;u<64;u=u+1) begin if(~tlb_replace_flag & ~used[u]) begin tlb_entry_replace_d1[u] = ~used[u] ; tlb_replace_flag=1'b1; end end if(~tlb_replace_flag) begin tlb_entry_replace_d1[63] = 1'b1; end end always @(posedge clk) begin // named in this manner to keep arch model happy. tlb_entry_replace <= tlb_entry_replace_d1 ; end // INNO - 2 stage delay before update is visible always @(posedge clk) begin tlb_entry_replace_d2 <= tlb_entry_replace ; end //========================================================================================= // TLB WRITEABLE DETECTION //========================================================================================= // 2-cycles later, tlb become writeable always @(posedge clk) begin tlb_not_writeable_d1 <= tlb_not_writeable ; end always @(posedge clk) begin tlb_writeable <= ~tlb_not_writeable_d1 ; end endmodule `endif