//***************************************************************************** // DISCLAIMER OF LIABILITY // // This file contains proprietary and confidential information of // Xilinx, Inc. ("Xilinx"), that is distributed under a license // from Xilinx, and may be used, copied and/or disclosed only // pursuant to the terms of a valid license agreement with Xilinx. // // XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION // ("MATERIALS") "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER // EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING WITHOUT // LIMITATION, ANY WARRANTY WITH RESPECT TO NONINFRINGEMENT, // MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. Xilinx // does not warrant that functions included in the Materials will // meet the requirements of Licensee, or that the operation of the // Materials will be uninterrupted or error-free, or that defects // in the Materials will be corrected. Furthermore, Xilinx does // not warrant or make any representations regarding use, or the // results of the use, of the Materials in terms of correctness, // accuracy, reliability or otherwise. // // Xilinx products are not designed or intended to be fail-safe, // or for use in any application requiring fail-safe performance, // such as life-support or safety devices or systems, Class III // medical devices, nuclear facilities, applications related to // the deployment of airbags, or any other applications that could // lead to death, personal injury or severe property or // environmental damage (individually and collectively, "critical // applications"). Customer assumes the sole risk and liability // of any use of Xilinx products in critical applications, // subject only to applicable laws and regulations governing // limitations on product liability. // // Copyright 2006, 2007, 2008 Xilinx, Inc. // All rights reserved. // // This disclaimer and copyright notice must be retained as part // of this file at all times. //***************************************************************************** // ____ ____ // / /\/ / // /___/ \ / Vendor: Xilinx // \ \ \/ Version: 3.6 // \ \ Application: MIG // / / Filename: ddr2_phy_ctl_io.v // /___/ /\ Date Last Modified: $Date: 2010/06/29 12:03:43 $ // \ \ / \ Date Created: Thu Aug 24 2006 // \___\/\___\ // //Device: Virtex-5 //Design Name: DDR2 //Purpose: // This module puts the memory control signals like address, bank address, // row address strobe, column address strobe, write enable and clock enable // in the IOBs. //Reference: //Revision History: // Rev 1.1 - To fix CR 540201, S attribute is added for CS, CKE and ODT // module (FDCPE) instances. PK. 01/08/10 //***************************************************************************** `timescale 1ns/1ps module ddr2_phy_ctl_io # ( // Following parameters are for 72-bit RDIMM design (for ML561 Reference // board design). Actual values may be different. Actual parameters values // are passed from design top module dram module. Please refer to // the dram module for actual values. parameter BANK_WIDTH = 2, parameter CKE_WIDTH = 1, parameter COL_WIDTH = 10, parameter CS_NUM = 1, parameter TWO_T_TIME_EN = 0, parameter CS_WIDTH = 1, parameter ODT_WIDTH = 1, parameter ROW_WIDTH = 14, parameter DDR_TYPE = 1 ) ( input clk0, input clk90, input rst0, input rst90, input [ROW_WIDTH-1:0] ctrl_addr, input [BANK_WIDTH-1:0] ctrl_ba, input ctrl_ras_n, input ctrl_cas_n, input ctrl_we_n, input [CS_NUM-1:0] ctrl_cs_n, input [ROW_WIDTH-1:0] phy_init_addr, input [BANK_WIDTH-1:0] phy_init_ba, input phy_init_ras_n, input phy_init_cas_n, input phy_init_we_n, input [CS_NUM-1:0] phy_init_cs_n, input [CKE_WIDTH-1:0] phy_init_cke, input phy_init_data_sel, input [CS_NUM-1:0] odt, output [ROW_WIDTH-1:0] ddr_addr, output [BANK_WIDTH-1:0] ddr_ba, output ddr_ras_n, output ddr_cas_n, output ddr_we_n, output [CKE_WIDTH-1:0] ddr_cke, output [CS_WIDTH-1:0] ddr_cs_n, output [ODT_WIDTH-1:0] ddr_odt ); reg [ROW_WIDTH-1:0] addr_mux; reg [BANK_WIDTH-1:0] ba_mux; reg cas_n_mux; reg [CS_NUM-1:0] cs_n_mux; reg ras_n_mux; reg we_n_mux; //*************************************************************************** // MUX to choose from either PHY or controller for SDRAM control generate // in 2t timing mode the extra register stage cannot be used. if(TWO_T_TIME_EN) begin // the control signals are asserted for two cycles always @(*)begin if (phy_init_data_sel) begin addr_mux = ctrl_addr; ba_mux = ctrl_ba; cas_n_mux = ctrl_cas_n; cs_n_mux = ctrl_cs_n; ras_n_mux = ctrl_ras_n; we_n_mux = ctrl_we_n; end else begin addr_mux = phy_init_addr; ba_mux = phy_init_ba; cas_n_mux = phy_init_cas_n; cs_n_mux = phy_init_cs_n; ras_n_mux = phy_init_ras_n; we_n_mux = phy_init_we_n; end end end else begin always @(posedge clk0)begin // register the signals in non 2t mode if (phy_init_data_sel) begin addr_mux <= ctrl_addr; ba_mux <= ctrl_ba; cas_n_mux <= ctrl_cas_n; cs_n_mux <= ctrl_cs_n; ras_n_mux <= ctrl_ras_n; we_n_mux <= ctrl_we_n; end else begin addr_mux <= phy_init_addr; ba_mux <= phy_init_ba; cas_n_mux <= phy_init_cas_n; cs_n_mux <= phy_init_cs_n; ras_n_mux <= phy_init_ras_n; we_n_mux <= phy_init_we_n; end end end endgenerate //*************************************************************************** // Output flop instantiation // NOTE: Make sure all control/address flops are placed in IOBs //*************************************************************************** // RAS: = 1 at reset (* IOB = "FORCE" *) FDCPE u_ff_ras_n ( .Q (ddr_ras_n), .C (clk0), .CE (1'b1), .CLR (1'b0), .D (ras_n_mux), .PRE (rst0) ) /* synthesis syn_useioff = 1 */; // CAS: = 1 at reset (* IOB = "FORCE" *) FDCPE u_ff_cas_n ( .Q (ddr_cas_n), .C (clk0), .CE (1'b1), .CLR (1'b0), .D (cas_n_mux), .PRE (rst0) ) /* synthesis syn_useioff = 1 */; // WE: = 1 at reset (* IOB = "FORCE" *) FDCPE u_ff_we_n ( .Q (ddr_we_n), .C (clk0), .CE (1'b1), .CLR (1'b0), .D (we_n_mux), .PRE (rst0) ) /* synthesis syn_useioff = 1 */; // CKE: = 0 at reset genvar cke_i; generate for (cke_i = 0; cke_i < CKE_WIDTH; cke_i = cke_i + 1) begin: gen_cke (* IOB = "FORCE" *) (* S = "TRUE" *) FDCPE u_ff_cke ( .Q (ddr_cke[cke_i]), .C (clk0), .CE (1'b1), .CLR (rst0), .D (phy_init_cke[cke_i]), .PRE (1'b0) ) /* synthesis syn_useioff = 1 */; end endgenerate // chip select: = 1 at reset // For unbuffered dimms the loading will be high. The chip select // can be asserted early if the loading is very high. The // code as is uses clock 0. If needed clock 270 can be used to // toggle chip select 1/4 clock cycle early. The code has // the clock 90 input for the early assertion of chip select. genvar cs_i; generate for(cs_i = 0; cs_i < CS_WIDTH; cs_i = cs_i + 1) begin: gen_cs_n if(TWO_T_TIME_EN) begin (* IOB = "FORCE" *) (* S = "TRUE" *) FDCPE u_ff_cs_n ( .Q (ddr_cs_n[cs_i]), .C (clk0), .CE (1'b1), .CLR (1'b0), .D (cs_n_mux[(cs_i*CS_NUM)/CS_WIDTH]), .PRE (rst0) ) /* synthesis syn_useioff = 1 */; end else begin // if (TWO_T_TIME_EN) (* IOB = "FORCE" *) (* S = "TRUE" *) FDCPE u_ff_cs_n ( .Q (ddr_cs_n[cs_i]), .C (clk0), .CE (1'b1), .CLR (1'b0), .D (cs_n_mux[(cs_i*CS_NUM)/CS_WIDTH]), .PRE (rst0) ) /* synthesis syn_useioff = 1 */; end // else: !if(TWO_T_TIME_EN) end endgenerate // address: = X at reset genvar addr_i; generate for (addr_i = 0; addr_i < ROW_WIDTH; addr_i = addr_i + 1) begin: gen_addr (* IOB = "FORCE" *) FDCPE u_ff_addr ( .Q (ddr_addr[addr_i]), .C (clk0), .CE (1'b1), .CLR (1'b0), .D (addr_mux[addr_i]), .PRE (1'b0) ) /* synthesis syn_useioff = 1 */; end endgenerate // bank address = X at reset genvar ba_i; generate for (ba_i = 0; ba_i < BANK_WIDTH; ba_i = ba_i + 1) begin: gen_ba (* IOB = "FORCE" *) FDCPE u_ff_ba ( .Q (ddr_ba[ba_i]), .C (clk0), .CE (1'b1), .CLR (1'b0), .D (ba_mux[ba_i]), .PRE (1'b0) ) /* synthesis syn_useioff = 1 */; end endgenerate // ODT control = 0 at reset genvar odt_i; generate if (DDR_TYPE > 0) begin: gen_odt_ddr2 for (odt_i = 0; odt_i < ODT_WIDTH; odt_i = odt_i + 1) begin: gen_odt (* IOB = "FORCE" *) (* S = "TRUE" *) FDCPE u_ff_odt ( .Q (ddr_odt[odt_i]), .C (clk0), .CE (1'b1), .CLR (rst0), .D (odt[(odt_i*CS_NUM)/ODT_WIDTH]), .PRE (1'b0) ) /* synthesis syn_useioff = 1 */; end end endgenerate endmodule