1 | // ========== Copyright Header Begin ========================================== |
---|
2 | // |
---|
3 | // OpenSPARC T1 Processor File: sparc_exu_rml.v |
---|
4 | // Copyright (c) 2006 Sun Microsystems, Inc. All Rights Reserved. |
---|
5 | // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES. |
---|
6 | // |
---|
7 | // The above named program is free software; you can redistribute it and/or |
---|
8 | // modify it under the terms of the GNU General Public |
---|
9 | // License version 2 as published by the Free Software Foundation. |
---|
10 | // |
---|
11 | // The above named program is distributed in the hope that it will be |
---|
12 | // useful, but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
14 | // General Public License for more details. |
---|
15 | // |
---|
16 | // You should have received a copy of the GNU General Public |
---|
17 | // License along with this work; if not, write to the Free Software |
---|
18 | // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. |
---|
19 | // |
---|
20 | // ========== Copyright Header End ============================================ |
---|
21 | //////////////////////////////////////////////////////////////////////// |
---|
22 | /* |
---|
23 | // Module Name: sparc_exu_rml |
---|
24 | // Description: Register management logic. Contains CWP, CANSAVE, CANRESTORE |
---|
25 | // and other window management registers. Generates RF related traps |
---|
26 | // and switches the global registers to alternate globals. All the registers |
---|
27 | // are written in the W stage (there is no bypassing so they must |
---|
28 | // swap out) and will either get a new value generated by a window management |
---|
29 | // Instruction or by a WRPS instruction. The following traps can be generated: |
---|
30 | // Fill: restore with canrestore == 0 |
---|
31 | // clean_window: save with cleanwin-canrestore == 0 |
---|
32 | // spill: flushw with cansave != nwindows -2 or |
---|
33 | // save with cansave == 0 |
---|
34 | // It is assumed that the contents of the new window will get squashed |
---|
35 | // on a clean_window or fill trap so the save or restore gets executed |
---|
36 | // normally. Spill traps or WRCWPs mean that all 16 windowed registers |
---|
37 | // must be saved and restored (a 4 cycle operation). |
---|
38 | */ |
---|
39 | module sparc_exu_rml (/*AUTOARG*/ |
---|
40 | // Outputs |
---|
41 | exu_tlu_spill_wtype, exu_tlu_spill_other, exu_tlu_cwp_retry, |
---|
42 | exu_tlu_cwp3_w, exu_tlu_cwp2_w, exu_tlu_cwp1_w, exu_tlu_cwp0_w, |
---|
43 | so, exu_tlu_cwp_cmplt, exu_tlu_cwp_cmplt_tid, rml_ecl_cwp_d, |
---|
44 | rml_ecl_cansave_d, rml_ecl_canrestore_d, rml_ecl_otherwin_d, |
---|
45 | rml_ecl_wstate_d, rml_ecl_cleanwin_d, rml_ecl_fill_e, |
---|
46 | rml_ecl_clean_window_e, rml_ecl_other_e, rml_ecl_wtype_e, |
---|
47 | exu_ifu_spill_e, rml_ecl_gl_e, rml_irf_old_lo_cwp_e, |
---|
48 | rml_irf_new_lo_cwp_e, rml_irf_old_e_cwp_e, rml_irf_new_e_cwp_e, |
---|
49 | rml_irf_swap_even_e, rml_irf_swap_odd_e, rml_irf_swap_local_e, |
---|
50 | rml_irf_kill_restore_w, rml_irf_cwpswap_tid_e, rml_ecl_swap_done, |
---|
51 | rml_ecl_rmlop_done_e, exu_ifu_oddwin_s, exu_tlu_spill, |
---|
52 | exu_tlu_spill_tid, rml_ecl_kill_m, rml_irf_old_agp, |
---|
53 | rml_irf_new_agp, rml_irf_swap_global, rml_irf_global_tid, |
---|
54 | // Inputs |
---|
55 | tlu_exu_cwp_retry_m, rst_tri_en, rclk, se, si, grst_l, arst_l, |
---|
56 | ifu_exu_tid_s2, ifu_exu_save_d, ifu_exu_restore_d, |
---|
57 | ifu_exu_saved_e, ifu_exu_restored_e, ifu_exu_flushw_e, |
---|
58 | ecl_rml_thr_m, ecl_rml_thr_w, ecl_rml_cwp_wen_e, |
---|
59 | ecl_rml_cansave_wen_w, ecl_rml_canrestore_wen_w, |
---|
60 | ecl_rml_otherwin_wen_w, ecl_rml_wstate_wen_w, |
---|
61 | ecl_rml_cleanwin_wen_w, ecl_rml_xor_data_e, ecl_rml_kill_e, |
---|
62 | ecl_rml_kill_w, ecl_rml_early_flush_w, exu_tlu_wsr_data_w, |
---|
63 | tlu_exu_agp, tlu_exu_agp_swap, tlu_exu_agp_tid, tlu_exu_cwp_m, |
---|
64 | tlu_exu_cwpccr_update_m, ecl_rml_inst_vld_w,current_cwp |
---|
65 | ) ; |
---|
66 | input rclk; |
---|
67 | input se; |
---|
68 | input si; |
---|
69 | input grst_l; |
---|
70 | input arst_l; |
---|
71 | input [1:0] ifu_exu_tid_s2; |
---|
72 | input ifu_exu_save_d; |
---|
73 | input ifu_exu_restore_d; |
---|
74 | input ifu_exu_saved_e; |
---|
75 | input ifu_exu_restored_e; |
---|
76 | input ifu_exu_flushw_e; |
---|
77 | input [3:0] ecl_rml_thr_m; |
---|
78 | input [3:0] ecl_rml_thr_w; |
---|
79 | input ecl_rml_cwp_wen_e; |
---|
80 | input ecl_rml_cansave_wen_w; |
---|
81 | input ecl_rml_canrestore_wen_w; |
---|
82 | input ecl_rml_otherwin_wen_w; |
---|
83 | input ecl_rml_wstate_wen_w; |
---|
84 | input ecl_rml_cleanwin_wen_w; |
---|
85 | input [2:0] ecl_rml_xor_data_e; |
---|
86 | input ecl_rml_kill_e;// needed for oddwin updates |
---|
87 | input ecl_rml_kill_w; |
---|
88 | input ecl_rml_early_flush_w; |
---|
89 | input [5:0] exu_tlu_wsr_data_w; // for wstate |
---|
90 | input [1:0] tlu_exu_agp; // alternate global pointer |
---|
91 | input tlu_exu_agp_swap;// switch globals |
---|
92 | input [1:0] tlu_exu_agp_tid;// thread that agp refers to |
---|
93 | input [2:0] tlu_exu_cwp_m; // for switching cwp on return from trap |
---|
94 | input tlu_exu_cwpccr_update_m; |
---|
95 | input ecl_rml_inst_vld_w; |
---|
96 | /*AUTOINPUT*/ |
---|
97 | // Beginning of automatic inputs (from unused autoinst inputs) |
---|
98 | input rst_tri_en; // To cwp of sparc_exu_rml_cwp.v |
---|
99 | input tlu_exu_cwp_retry_m; // To cwp of sparc_exu_rml_cwp.v |
---|
100 | // End of automatics |
---|
101 | |
---|
102 | /*AUTOOUTPUT*/ |
---|
103 | // Beginning of automatic outputs (from unused autoinst outputs) |
---|
104 | output [2:0] exu_tlu_cwp0_w; // From cwp of sparc_exu_rml_cwp.v |
---|
105 | output [2:0] exu_tlu_cwp1_w; // From cwp of sparc_exu_rml_cwp.v |
---|
106 | output [2:0] exu_tlu_cwp2_w; // From cwp of sparc_exu_rml_cwp.v |
---|
107 | output [2:0] exu_tlu_cwp3_w; // From cwp of sparc_exu_rml_cwp.v |
---|
108 | output exu_tlu_cwp_retry; // From cwp of sparc_exu_rml_cwp.v |
---|
109 | output exu_tlu_spill_other; // From cwp of sparc_exu_rml_cwp.v |
---|
110 | output [2:0] exu_tlu_spill_wtype; // From cwp of sparc_exu_rml_cwp.v |
---|
111 | // End of automatics |
---|
112 | output so; |
---|
113 | output exu_tlu_cwp_cmplt; |
---|
114 | output [1:0] exu_tlu_cwp_cmplt_tid; |
---|
115 | output [2:0] rml_ecl_cwp_d; |
---|
116 | output [2:0] rml_ecl_cansave_d; |
---|
117 | output [2:0] rml_ecl_canrestore_d; |
---|
118 | output [2:0] rml_ecl_otherwin_d; |
---|
119 | output [5:0] rml_ecl_wstate_d; |
---|
120 | output [2:0] rml_ecl_cleanwin_d; |
---|
121 | output rml_ecl_fill_e; |
---|
122 | output rml_ecl_clean_window_e; |
---|
123 | output rml_ecl_other_e; |
---|
124 | output [2:0] rml_ecl_wtype_e; |
---|
125 | output exu_ifu_spill_e; |
---|
126 | output [1:0] rml_ecl_gl_e; |
---|
127 | |
---|
128 | output [2:0] rml_irf_old_lo_cwp_e; // current window pointer for locals and odds |
---|
129 | output [2:0] rml_irf_new_lo_cwp_e; // current window pointer for locals and odd |
---|
130 | output [1:0] rml_irf_old_e_cwp_e; // current window pointer for evens |
---|
131 | output [1:0] rml_irf_new_e_cwp_e; // current window pointer for evens |
---|
132 | output rml_irf_swap_even_e; |
---|
133 | output rml_irf_swap_odd_e; |
---|
134 | output rml_irf_swap_local_e; |
---|
135 | output rml_irf_kill_restore_w; |
---|
136 | output [1:0] rml_irf_cwpswap_tid_e; |
---|
137 | |
---|
138 | output [3:0] rml_ecl_swap_done; |
---|
139 | output rml_ecl_rmlop_done_e; |
---|
140 | output [3:0] exu_ifu_oddwin_s; |
---|
141 | output exu_tlu_spill; |
---|
142 | output [1:0] exu_tlu_spill_tid; |
---|
143 | output rml_ecl_kill_m; |
---|
144 | |
---|
145 | output [1:0] rml_irf_old_agp; // alternate global pointer |
---|
146 | output [1:0] rml_irf_new_agp; // alternate global pointer |
---|
147 | output rml_irf_swap_global; |
---|
148 | output [1:0] rml_irf_global_tid; |
---|
149 | output reg [11:0] current_cwp; |
---|
150 | |
---|
151 | wire clk; |
---|
152 | wire [1:0] tid_d; |
---|
153 | wire [3:0] thr_d; |
---|
154 | wire [1:0] tid_e; |
---|
155 | wire rml_reset_l; |
---|
156 | wire reset; |
---|
157 | wire save_e; |
---|
158 | wire save_m; |
---|
159 | wire restore_e; |
---|
160 | wire swap_e; |
---|
161 | wire agp_wen; |
---|
162 | wire [1:0] agp_thr0; |
---|
163 | wire [1:0] agp_thr1; |
---|
164 | wire [1:0] agp_thr2; |
---|
165 | wire [1:0] agp_thr3; |
---|
166 | wire [1:0] agp_thr0_next; |
---|
167 | wire [1:0] agp_thr1_next; |
---|
168 | wire [1:0] agp_thr2_next; |
---|
169 | wire [1:0] agp_thr3_next; |
---|
170 | wire agp_wen_thr0_w; |
---|
171 | wire agp_wen_thr1_w; |
---|
172 | wire agp_wen_thr2_w; |
---|
173 | wire agp_wen_thr3_w; |
---|
174 | wire [1:0] new_agp; |
---|
175 | wire [1:0] agp_tid; |
---|
176 | wire [3:0] agp_thr; |
---|
177 | wire full_swap_e; |
---|
178 | wire did_restore_m; |
---|
179 | wire did_restore_w; |
---|
180 | wire kill_restore_m; |
---|
181 | wire kill_restore_w; |
---|
182 | |
---|
183 | wire [2:0] rml_ecl_cwp_e; |
---|
184 | wire [2:0] rml_ecl_cansave_e; |
---|
185 | wire [2:0] rml_ecl_canrestore_e; |
---|
186 | wire [2:0] rml_ecl_otherwin_e; |
---|
187 | wire [2:0] rml_ecl_cleanwin_e; |
---|
188 | |
---|
189 | wire [2:0] rml_next_cwp_e; |
---|
190 | wire [2:0] rml_next_cansave_e;// e-stage of rml generated new data |
---|
191 | wire [2:0] rml_next_canrestore_e; |
---|
192 | wire [2:0] rml_next_otherwin_e; |
---|
193 | wire [2:0] rml_next_cleanwin_e; |
---|
194 | |
---|
195 | wire [2:0] next_cwp_e; |
---|
196 | wire [2:0] next_cansave_e; // e-stage of new data |
---|
197 | wire [2:0] next_canrestore_e; |
---|
198 | wire [2:0] next_otherwin_e; |
---|
199 | wire [2:0] next_cleanwin_e; |
---|
200 | wire [2:0] next_cwp_m; // m-stage of new data |
---|
201 | wire [2:0] next_cansave_m; |
---|
202 | wire [2:0] next_canrestore_m; |
---|
203 | wire [2:0] next_otherwin_m; |
---|
204 | wire [2:0] next_cleanwin_m; |
---|
205 | wire [2:0] next_cansave_w;// w-stage of new data |
---|
206 | wire [2:0] next_canrestore_w; |
---|
207 | wire [2:0] next_otherwin_w; |
---|
208 | wire [2:0] next_cleanwin_w; |
---|
209 | wire [2:0] next_cwp_noreset_w; |
---|
210 | wire [2:0] next_cwp_w; |
---|
211 | |
---|
212 | wire rml_cwp_wen_e; // wen for cwp from rml |
---|
213 | wire rml_cwp_wen_m; // wen for cwp from rml |
---|
214 | wire [2:0] spill_cwp_e; // next cwp if there is a spill trap |
---|
215 | wire spill_cwp_carry0; // carry bit from spill cwp computations |
---|
216 | wire spill_cwp_carry1; |
---|
217 | wire next_cwp_sel_inc; // select line to next_cwp mux |
---|
218 | |
---|
219 | wire rml_cansave_wen_w;// rml generated wen |
---|
220 | wire rml_canrestore_wen_w; |
---|
221 | wire rml_otherwin_wen_w; |
---|
222 | wire rml_cleanwin_wen_w; |
---|
223 | |
---|
224 | wire cansave_wen_w;// wen to registers |
---|
225 | wire canrestore_wen_w; |
---|
226 | wire otherwin_wen_w; |
---|
227 | wire cleanwin_wen_w; |
---|
228 | wire cwp_wen_nokill_w; |
---|
229 | wire cwp_wen_w; |
---|
230 | wire wstate_wen_w; |
---|
231 | |
---|
232 | wire cwp_wen_m; // rml generated wen w/o kills |
---|
233 | wire cansave_wen_m; |
---|
234 | wire canrestore_wen_m; |
---|
235 | wire otherwin_wen_m; |
---|
236 | wire cleanwin_wen_m; |
---|
237 | wire cansave_wen_valid_m; // rml generated wen w/ kills |
---|
238 | wire canrestore_wen_valid_m; |
---|
239 | wire otherwin_wen_valid_m; |
---|
240 | wire cleanwin_wen_valid_m; |
---|
241 | |
---|
242 | wire cwp_wen_e; // rml generated wen_e |
---|
243 | wire cansave_wen_e; |
---|
244 | wire canrestore_wen_e; |
---|
245 | wire otherwin_wen_e; |
---|
246 | wire cleanwin_wen_e; |
---|
247 | |
---|
248 | wire cansave_inc_e; |
---|
249 | wire canrestore_inc_e; |
---|
250 | |
---|
251 | wire spill_trap_save; |
---|
252 | wire spill_trap_flush; |
---|
253 | wire spill_m; |
---|
254 | wire [2:0] cleanwin_xor_canrestore; |
---|
255 | |
---|
256 | wire otherwin_is0_e; |
---|
257 | wire cansave_is0_e; |
---|
258 | wire canrestore_is0_e; |
---|
259 | |
---|
260 | wire swap_locals_ins; |
---|
261 | wire swap_outs; |
---|
262 | wire [2:0] old_cwp_e; |
---|
263 | wire [2:0] new_cwp_e; |
---|
264 | |
---|
265 | wire [2:0] rml_ecl_wtype_d; |
---|
266 | wire [2:0] rml_ecl_wtype_e; |
---|
267 | wire rml_ecl_other_d; |
---|
268 | wire rml_ecl_other_e; |
---|
269 | wire exu_tlu_spill_e; |
---|
270 | wire rml_ecl_kill_e; |
---|
271 | wire rml_kill_w; |
---|
272 | wire vld_w; |
---|
273 | wire win_trap_e; |
---|
274 | wire win_trap_m; |
---|
275 | wire win_trap_w; |
---|
276 | |
---|
277 | assign clk = rclk; |
---|
278 | // Reset flop |
---|
279 | dffrl_async rstff(.din (grst_l), |
---|
280 | .q (rml_reset_l), |
---|
281 | .clk (clk), |
---|
282 | .rst_l (arst_l), .se(se), .si(), .so()); |
---|
283 | assign reset = ~rml_reset_l; |
---|
284 | |
---|
285 | dff_s #(2) tid_s2d(.din(ifu_exu_tid_s2[1:0]), .clk(clk), .q(tid_d[1:0]), .se(se), .si(), .so()); |
---|
286 | dff_s #(2) tid_d2e(.din(tid_d[1:0]), .clk(clk), .q(tid_e[1:0]), .se(se), .si(), .so()); |
---|
287 | assign thr_d[3] = tid_d[1] & tid_d[0]; |
---|
288 | assign thr_d[2] = tid_d[1] & ~tid_d[0]; |
---|
289 | assign thr_d[1] = ~tid_d[1] & tid_d[0]; |
---|
290 | assign thr_d[0] = ~tid_d[1] & ~tid_d[0]; |
---|
291 | |
---|
292 | dff_s save_d2e(.din(ifu_exu_save_d), .clk(clk), .q(save_e), .se(se), .si(), .so()); |
---|
293 | dff_s save_e2m(.din(save_e), .clk(clk), .q(save_m), .se(se), .si(), .so()); |
---|
294 | dff_s restore_d2e(.din(ifu_exu_restore_d), .clk(clk), .q(restore_e), .se(se), .si(), .so()); |
---|
295 | |
---|
296 | // don't check flush_pipe in w if caused by rml trap. Things with a higher priority |
---|
297 | // than a window trap have been accumulated into ecl_rml_kill_w |
---|
298 | assign vld_w = ecl_rml_inst_vld_w & (~ecl_rml_early_flush_w | win_trap_w); |
---|
299 | assign rml_kill_w = ecl_rml_kill_w | ~vld_w; |
---|
300 | |
---|
301 | assign win_trap_e = rml_ecl_fill_e | exu_tlu_spill_e | rml_ecl_clean_window_e; |
---|
302 | dff_s win_trap_e2m(.din(win_trap_e), .clk(clk), .q(win_trap_m), .se(se), .si(), .so()); |
---|
303 | dff_s win_trap_m2w(.din(win_trap_m), .clk(clk), .q(win_trap_w), .se(se), .si(), .so()); |
---|
304 | |
---|
305 | assign canrestore_is0_e = (~rml_ecl_canrestore_e[0] & ~rml_ecl_canrestore_e[1] |
---|
306 | & ~rml_ecl_canrestore_e[2]); |
---|
307 | assign cansave_is0_e = (~rml_ecl_cansave_e[0] & ~rml_ecl_cansave_e[1] & |
---|
308 | ~rml_ecl_cansave_e[2]); |
---|
309 | assign otherwin_is0_e = ~rml_ecl_other_e; |
---|
310 | |
---|
311 | /////////////////////////////////////// |
---|
312 | // Signals that operations are done |
---|
313 | // restore/return is not signalled here |
---|
314 | // because it depends on the write to the |
---|
315 | // irf (computed in ecl_wb) |
---|
316 | //////////////////////////////////////// |
---|
317 | assign rml_ecl_rmlop_done_e = (ifu_exu_saved_e | ifu_exu_restored_e | |
---|
318 | (ifu_exu_flushw_e & ~spill_trap_flush)); |
---|
319 | |
---|
320 | ////////////////////////// |
---|
321 | // Trap generation |
---|
322 | ////////////////////////// |
---|
323 | // Fill trap generated on restore and canrestore == 0 |
---|
324 | assign rml_ecl_fill_e = restore_e & canrestore_is0_e; |
---|
325 | |
---|
326 | // Spill trap on save with cansave == 0 |
---|
327 | assign spill_trap_save = save_e & cansave_is0_e; |
---|
328 | assign exu_ifu_spill_e = spill_trap_save; |
---|
329 | // Spill trap on wflush with cansave != (NWINDOWS - 2 = 6) |
---|
330 | assign spill_trap_flush = (ifu_exu_flushw_e & ~(rml_ecl_cansave_e[2] & |
---|
331 | rml_ecl_cansave_e[1] & |
---|
332 | ~rml_ecl_cansave_e[0])); |
---|
333 | assign exu_tlu_spill_e = (spill_trap_save | spill_trap_flush); |
---|
334 | dff_s spill_e2m(.din(exu_tlu_spill_e), .clk(clk), .q(spill_m), .se(se), .si(), .so()); |
---|
335 | |
---|
336 | // Clean window trap on save w/ cleanwin - canrestore == 0 |
---|
337 | // or cleanwin == canrestore |
---|
338 | // (not signalled on spill traps because spill is higher priority) |
---|
339 | assign cleanwin_xor_canrestore = rml_ecl_cleanwin_e ^ rml_ecl_canrestore_e; |
---|
340 | assign rml_ecl_clean_window_e = ~(cleanwin_xor_canrestore[2] | |
---|
341 | cleanwin_xor_canrestore[1] | |
---|
342 | cleanwin_xor_canrestore[0]) & save_e & ~exu_tlu_spill_e; |
---|
343 | |
---|
344 | // Kill signal for w1 wen bit (all others don't care) |
---|
345 | assign rml_ecl_kill_e = rml_ecl_fill_e | exu_tlu_spill_e; |
---|
346 | dff_s rml_kill_e2m(.din(rml_ecl_kill_e), .clk(clk), .q(rml_ecl_kill_m), |
---|
347 | .se(se), .si(), .so()); |
---|
348 | |
---|
349 | |
---|
350 | // WTYPE generation |
---|
351 | assign rml_ecl_other_d = (rml_ecl_otherwin_d[0] | rml_ecl_otherwin_d[1] |
---|
352 | | rml_ecl_otherwin_d[2]); |
---|
353 | dff_s other_d2e(.din(rml_ecl_other_d), .clk(clk), .q(rml_ecl_other_e), .se(se), |
---|
354 | .si(), .so()); |
---|
355 | mux2ds #(3) wtype_mux(.dout(rml_ecl_wtype_d[2:0]), |
---|
356 | .in0(rml_ecl_wstate_d[2:0]), |
---|
357 | .in1(rml_ecl_wstate_d[5:3]), |
---|
358 | .sel0(~rml_ecl_other_d), |
---|
359 | .sel1(rml_ecl_other_d)); |
---|
360 | dff_s #(3) wtype_d2e(.din(rml_ecl_wtype_d[2:0]), .clk(clk), .q(rml_ecl_wtype_e[2:0]), |
---|
361 | .se(se), .si(), .so()); |
---|
362 | |
---|
363 | |
---|
364 | //////////////////////////// |
---|
365 | // Interface with IRF |
---|
366 | //////////////////////////// |
---|
367 | assign rml_irf_old_lo_cwp_e[2:0] = old_cwp_e[2:0]; |
---|
368 | assign rml_irf_new_lo_cwp_e[2:0] = new_cwp_e[2:0]; |
---|
369 | assign rml_irf_old_e_cwp_e[1:0] = (old_cwp_e[0])? old_cwp_e[2:1] + 2'b01: old_cwp_e[2:1]; |
---|
370 | assign rml_irf_new_e_cwp_e[1:0] = (new_cwp_e[0])? new_cwp_e[2:1] + 2'b01: new_cwp_e[2:1]; |
---|
371 | |
---|
372 | assign rml_irf_swap_local_e = (swap_e | swap_locals_ins); |
---|
373 | assign rml_irf_swap_odd_e = ((save_e | ecl_rml_cwp_wen_e | spill_trap_flush | swap_locals_ins) & old_cwp_e[0]) | |
---|
374 | ((restore_e | swap_outs) & ~old_cwp_e[0]); |
---|
375 | assign rml_irf_swap_even_e = ((save_e | ecl_rml_cwp_wen_e | spill_trap_flush | swap_locals_ins) & ~old_cwp_e[0]) | |
---|
376 | ((restore_e | swap_outs) & old_cwp_e[0]); |
---|
377 | |
---|
378 | assign swap_e = save_e | restore_e | ecl_rml_cwp_wen_e | spill_trap_flush; |
---|
379 | dff_s dff_did_restore_e2m(.din(swap_e), .clk(clk), |
---|
380 | .q(did_restore_m), .se(se), |
---|
381 | .si(), .so()); |
---|
382 | dff_s dff_did_restore_m2w(.din(did_restore_m), .clk(clk), |
---|
383 | .q(did_restore_w), .se(se), |
---|
384 | .si(), .so()); |
---|
385 | // kill restore on all saves (except those that spill) and any swaps that |
---|
386 | // get kill signals |
---|
387 | assign kill_restore_m = (~spill_m & save_m); |
---|
388 | dff_s dff_kill_restore_m2w(.din(kill_restore_m), .clk(clk), .q(kill_restore_w), |
---|
389 | .se(se), .si(), .so()); |
---|
390 | assign rml_irf_kill_restore_w = kill_restore_w | (did_restore_w & rml_kill_w); |
---|
391 | |
---|
392 | |
---|
393 | /////////////////////////////// |
---|
394 | // CWP logic |
---|
395 | /////////////////////////////// |
---|
396 | // Logic to compute next_cwp on spill trap. |
---|
397 | // CWP = CWP + CANSAVE + 2 |
---|
398 | assign spill_cwp_e[0] = rml_ecl_cwp_e[0] ^ rml_ecl_cansave_e[0]; |
---|
399 | assign spill_cwp_carry0 = rml_ecl_cwp_e[0] & rml_ecl_cansave_e[0]; |
---|
400 | assign spill_cwp_e[1] = rml_ecl_cwp_e[1] ^ rml_ecl_cansave_e[1] ^ ~spill_cwp_carry0; |
---|
401 | assign spill_cwp_carry1 = (rml_ecl_cwp_e[1] | rml_ecl_cansave_e[1] | |
---|
402 | spill_cwp_carry0) & ~(rml_ecl_cwp_e[1] & |
---|
403 | rml_ecl_cansave_e[1] & |
---|
404 | spill_cwp_carry0); |
---|
405 | assign spill_cwp_e[2] = rml_ecl_cwp_e[2] ^ rml_ecl_cansave_e[2] ^ spill_cwp_carry1; |
---|
406 | |
---|
407 | assign rml_cwp_wen_e = (save_e | restore_e) & ~exu_tlu_spill_e; |
---|
408 | assign cwp_wen_e = (rml_cwp_wen_e | ecl_rml_cwp_wen_e) & ~ecl_rml_kill_e; |
---|
409 | sparc_exu_rml_inc3 cwp_inc(.dout(rml_next_cwp_e[2:0]), .din(rml_ecl_cwp_e[2:0]), |
---|
410 | .inc(save_e)); |
---|
411 | |
---|
412 | assign next_cwp_sel_inc = ~(ecl_rml_cwp_wen_e | exu_tlu_spill_e); |
---|
413 | mux3ds #(3) next_cwp_mux(.dout(next_cwp_e[2:0]), |
---|
414 | .in0(rml_next_cwp_e[2:0]), |
---|
415 | .in1(ecl_rml_xor_data_e[2:0]), |
---|
416 | .in2(spill_cwp_e[2:0]), |
---|
417 | .sel0(next_cwp_sel_inc), |
---|
418 | .sel1(ecl_rml_cwp_wen_e), |
---|
419 | .sel2(exu_tlu_spill_e)); |
---|
420 | |
---|
421 | dff_s cwp_wen_e2m(.din(cwp_wen_e), .clk(clk), .q(rml_cwp_wen_m), |
---|
422 | .se(se), .si(), .so()); |
---|
423 | dff_s #(3) next_cwp_e2m(.din(next_cwp_e[2:0]), .clk(clk), .q(next_cwp_m[2:0]), |
---|
424 | .se(se), .si(), .so()); |
---|
425 | assign cwp_wen_m = rml_cwp_wen_m; |
---|
426 | dff_s #(3) next_cwp_m2w(.din(next_cwp_m[2:0]), .clk(clk), .q(next_cwp_noreset_w[2:0]), |
---|
427 | .se(se), .si(), .so()); |
---|
428 | dff_s cwp_wen_m2w(.din(cwp_wen_m), .clk(clk), .q(cwp_wen_nokill_w), |
---|
429 | .se(se), .si(), .so()); |
---|
430 | assign cwp_wen_w = cwp_wen_nokill_w & ~rml_kill_w; |
---|
431 | assign next_cwp_w[2:0] = next_cwp_noreset_w[2:0]; |
---|
432 | |
---|
433 | assign full_swap_e = (exu_tlu_spill_e | ecl_rml_cwp_wen_e); |
---|
434 | |
---|
435 | |
---|
436 | // oddwin signal for ifu needs bypass from w. It is done in M and staged for timing. |
---|
437 | // This is possible because the thread is switched out so there is only one bypass condition. |
---|
438 | // Only save/return will switch in fast enough for a bypass so this is the only write condition |
---|
439 | // we need to check |
---|
440 | wire [3:0] oddwin_m; |
---|
441 | wire [3:0] oddwin_w; |
---|
442 | assign oddwin_m[3] = (cwp_wen_m & ecl_rml_thr_m[3])? next_cwp_m[0]: oddwin_w[3]; |
---|
443 | assign oddwin_m[2] = (cwp_wen_m & ecl_rml_thr_m[2])? next_cwp_m[0]: oddwin_w[2]; |
---|
444 | assign oddwin_m[1] = (cwp_wen_m & ecl_rml_thr_m[1])? next_cwp_m[0]: oddwin_w[1]; |
---|
445 | assign oddwin_m[0] = (cwp_wen_m & ecl_rml_thr_m[0])? next_cwp_m[0]: oddwin_w[0]; |
---|
446 | dff_s #(4) oddwin_dff(.din(oddwin_m[3:0]), .clk(clk), .q(exu_ifu_oddwin_s[3:0]), |
---|
447 | .se(se), .si(), .so()); |
---|
448 | |
---|
449 | integer i; |
---|
450 | wire [11:0] next_cwp; |
---|
451 | always @(posedge clk) |
---|
452 | begin |
---|
453 | current_cwp[2:0]<=(cwp_wen_m & ecl_rml_thr_m[0])? next_cwp_m: next_cwp[2:0]; |
---|
454 | current_cwp[5:3]<=(cwp_wen_m & ecl_rml_thr_m[1])? next_cwp_m: next_cwp[5:3]; |
---|
455 | current_cwp[8:6]<=(cwp_wen_m & ecl_rml_thr_m[2])? next_cwp_m: next_cwp[8:6]; |
---|
456 | current_cwp[11:9]<=(cwp_wen_m & ecl_rml_thr_m[3])? next_cwp_m: next_cwp[11:9]; |
---|
457 | end |
---|
458 | |
---|
459 | sparc_exu_rml_cwp cwp( |
---|
460 | .swap_outs (swap_outs), |
---|
461 | .swap_locals_ins(swap_locals_ins), |
---|
462 | .rml_ecl_cwp_e (rml_ecl_cwp_e[2:0]), |
---|
463 | .old_cwp_e (old_cwp_e[2:0]), |
---|
464 | .new_cwp_e (new_cwp_e[2:0]), |
---|
465 | .oddwin_w (oddwin_w[3:0]), |
---|
466 | .next_cwp (next_cwp), |
---|
467 | /*AUTOINST*/ |
---|
468 | // Outputs |
---|
469 | .rml_ecl_cwp_d (rml_ecl_cwp_d[2:0]), |
---|
470 | .exu_tlu_cwp0_w(exu_tlu_cwp0_w[2:0]), |
---|
471 | .exu_tlu_cwp1_w(exu_tlu_cwp1_w[2:0]), |
---|
472 | .exu_tlu_cwp2_w(exu_tlu_cwp2_w[2:0]), |
---|
473 | .exu_tlu_cwp3_w(exu_tlu_cwp3_w[2:0]), |
---|
474 | .rml_irf_cwpswap_tid_e(rml_irf_cwpswap_tid_e[1:0]), |
---|
475 | .exu_tlu_spill (exu_tlu_spill), |
---|
476 | .exu_tlu_spill_wtype(exu_tlu_spill_wtype[2:0]), |
---|
477 | .exu_tlu_spill_other(exu_tlu_spill_other), |
---|
478 | .exu_tlu_spill_tid(exu_tlu_spill_tid[1:0]), |
---|
479 | .rml_ecl_swap_done(rml_ecl_swap_done[3:0]), |
---|
480 | .exu_tlu_cwp_cmplt(exu_tlu_cwp_cmplt), |
---|
481 | .exu_tlu_cwp_cmplt_tid(exu_tlu_cwp_cmplt_tid[1:0]), |
---|
482 | .exu_tlu_cwp_retry(exu_tlu_cwp_retry), |
---|
483 | // Inputs |
---|
484 | .clk (clk), |
---|
485 | .se (se), |
---|
486 | .reset (reset), |
---|
487 | .rst_tri_en (rst_tri_en), |
---|
488 | .rml_ecl_wtype_e(rml_ecl_wtype_e[2:0]), |
---|
489 | .rml_ecl_other_e(rml_ecl_other_e), |
---|
490 | .exu_tlu_spill_e(exu_tlu_spill_e), |
---|
491 | .tlu_exu_cwpccr_update_m(tlu_exu_cwpccr_update_m), |
---|
492 | .tlu_exu_cwp_retry_m(tlu_exu_cwp_retry_m), |
---|
493 | .tlu_exu_cwp_m (tlu_exu_cwp_m[2:0]), |
---|
494 | .thr_d (thr_d[3:0]), |
---|
495 | .ecl_rml_thr_m (ecl_rml_thr_m[3:0]), |
---|
496 | .ecl_rml_thr_w (ecl_rml_thr_w[3:0]), |
---|
497 | .tid_e (tid_e[1:0]), |
---|
498 | .next_cwp_w (next_cwp_w[2:0]), |
---|
499 | .next_cwp_e (next_cwp_e[2:0]), |
---|
500 | .cwp_wen_w (cwp_wen_w), |
---|
501 | .save_e (save_e), |
---|
502 | .restore_e (restore_e), |
---|
503 | .ifu_exu_flushw_e(ifu_exu_flushw_e), |
---|
504 | .ecl_rml_cwp_wen_e(ecl_rml_cwp_wen_e), |
---|
505 | .full_swap_e (full_swap_e), |
---|
506 | .rml_kill_w (rml_kill_w)); |
---|
507 | |
---|
508 | /////////////////////////////// |
---|
509 | // Cansave logic |
---|
510 | /////////////////////////////// |
---|
511 | assign cansave_wen_e = ((save_e & ~cansave_is0_e & ~rml_ecl_clean_window_e) | |
---|
512 | ifu_exu_saved_e | |
---|
513 | (restore_e & ~canrestore_is0_e) | |
---|
514 | (ifu_exu_restored_e & otherwin_is0_e)); |
---|
515 | sparc_exu_rml_inc3 cansave_inc(.dout(rml_next_cansave_e[2:0]), .din(rml_ecl_cansave_e[2:0]), |
---|
516 | .inc(cansave_inc_e)); |
---|
517 | assign cansave_inc_e = restore_e | ifu_exu_saved_e; |
---|
518 | |
---|
519 | mux2ds #(3) next_cansave_mux(.dout(next_cansave_e[2:0]), |
---|
520 | .in0(ecl_rml_xor_data_e[2:0]), |
---|
521 | .in1(rml_next_cansave_e[2:0]), |
---|
522 | .sel0(~cansave_wen_e), |
---|
523 | .sel1(cansave_wen_e)); |
---|
524 | dff_s cansave_wen_e2m(.din(cansave_wen_e), .clk(clk), .q(cansave_wen_m), |
---|
525 | .se(se), .si(), .so()); |
---|
526 | dff_s #(3) next_cansave_e2m(.din(next_cansave_e[2:0]), .clk(clk), .q(next_cansave_m[2:0]), |
---|
527 | .se(se), .si(), .so()); |
---|
528 | assign cansave_wen_valid_m = cansave_wen_m; |
---|
529 | dff_s cansave_wen_m2w(.din(cansave_wen_valid_m), .clk(clk), .q(rml_cansave_wen_w), |
---|
530 | .se(se), .si(), .so()); |
---|
531 | dff_s #(3) next_cansave_m2w(.din(next_cansave_m[2:0]), .clk(clk), .q(next_cansave_w[2:0]), |
---|
532 | .se(se), .si(), .so()); |
---|
533 | assign cansave_wen_w = (rml_cansave_wen_w | ecl_rml_cansave_wen_w) & ~rml_kill_w; |
---|
534 | |
---|
535 | /////////////////////////////// |
---|
536 | // Canrestore logic |
---|
537 | /////////////////////////////// |
---|
538 | assign canrestore_wen_e = ((save_e & ~cansave_is0_e & ~rml_ecl_clean_window_e) | |
---|
539 | ifu_exu_restored_e | |
---|
540 | (restore_e & ~canrestore_is0_e) | |
---|
541 | (ifu_exu_saved_e & otherwin_is0_e)); |
---|
542 | sparc_exu_rml_inc3 canrestore_inc(.dout(rml_next_canrestore_e[2:0]), |
---|
543 | .din(rml_ecl_canrestore_e[2:0]), |
---|
544 | .inc(canrestore_inc_e)); |
---|
545 | assign canrestore_inc_e = ifu_exu_restored_e | save_e; |
---|
546 | |
---|
547 | mux2ds #(3) next_canrestore_mux(.dout(next_canrestore_e[2:0]), |
---|
548 | .in0(ecl_rml_xor_data_e[2:0]), |
---|
549 | .in1(rml_next_canrestore_e[2:0]), |
---|
550 | .sel0(~canrestore_wen_e), |
---|
551 | .sel1(canrestore_wen_e)); |
---|
552 | dff_s canrestore_wen_e2m(.din(canrestore_wen_e), .clk(clk), .q(canrestore_wen_m), |
---|
553 | .se(se), .si(), .so()); |
---|
554 | dff_s #(3) next_canrestore_e2m(.din(next_canrestore_e[2:0]), .clk(clk), .q(next_canrestore_m[2:0]), |
---|
555 | .se(se), .si(), .so()); |
---|
556 | assign canrestore_wen_valid_m = canrestore_wen_m; |
---|
557 | dff_s canrestore_wen_m2w(.din(canrestore_wen_valid_m), .clk(clk), .q(rml_canrestore_wen_w), |
---|
558 | .se(se), .si(), .so()); |
---|
559 | dff_s #(3) next_canrestore_m2w(.din(next_canrestore_m[2:0]), .clk(clk), .q(next_canrestore_w[2:0]), |
---|
560 | .se(se), .si(), .so()); |
---|
561 | assign canrestore_wen_w = (rml_canrestore_wen_w | ecl_rml_canrestore_wen_w) & ~rml_kill_w; |
---|
562 | |
---|
563 | /////////////////////////////// |
---|
564 | // Otherwin logic |
---|
565 | /////////////////////////////// |
---|
566 | // Decrements on saved or restored if otherwin != 0 |
---|
567 | assign otherwin_wen_e = ((ifu_exu_saved_e | ifu_exu_restored_e) |
---|
568 | & ~otherwin_is0_e); |
---|
569 | assign rml_next_otherwin_e[2] = ((rml_ecl_otherwin_e[2] & rml_ecl_otherwin_e[1]) | |
---|
570 | (rml_ecl_otherwin_e[2] & rml_ecl_otherwin_e[0])); |
---|
571 | assign rml_next_otherwin_e[1] = rml_ecl_otherwin_e[1] ^ ~rml_ecl_otherwin_e[0]; |
---|
572 | assign rml_next_otherwin_e[0] = ~rml_ecl_otherwin_e[0]; |
---|
573 | |
---|
574 | mux2ds #(3) next_otherwin_mux(.dout(next_otherwin_e[2:0]), |
---|
575 | .in0(ecl_rml_xor_data_e[2:0]), |
---|
576 | .in1(rml_next_otherwin_e[2:0]), |
---|
577 | .sel0(~otherwin_wen_e), |
---|
578 | .sel1(otherwin_wen_e)); |
---|
579 | dff_s otherwin_wen_e2m(.din(otherwin_wen_e), .clk(clk), .q(otherwin_wen_m), |
---|
580 | .se(se), .si(), .so()); |
---|
581 | dff_s #(3) next_otherwin_e2m(.din(next_otherwin_e[2:0]), .clk(clk), .q(next_otherwin_m[2:0]), |
---|
582 | .se(se), .si(), .so()); |
---|
583 | assign otherwin_wen_valid_m = otherwin_wen_m; |
---|
584 | dff_s otherwin_wen_m2w(.din(otherwin_wen_valid_m), .clk(clk), .q(rml_otherwin_wen_w), |
---|
585 | .se(se), .si(), .so()); |
---|
586 | dff_s #(3) next_otherwin_m2w(.din(next_otherwin_m[2:0]), .clk(clk), .q(next_otherwin_w[2:0]), |
---|
587 | .se(se), .si(), .so()); |
---|
588 | assign otherwin_wen_w = (rml_otherwin_wen_w | ecl_rml_otherwin_wen_w) & ~rml_kill_w; |
---|
589 | |
---|
590 | /////////////////////////////// |
---|
591 | // Cleanwin logic |
---|
592 | /////////////////////////////// |
---|
593 | // increments on restored if cleanwin != 7 |
---|
594 | assign cleanwin_wen_e = (ifu_exu_restored_e & |
---|
595 | ~(rml_ecl_cleanwin_e[2] & rml_ecl_cleanwin_e[1] |
---|
596 | & rml_ecl_cleanwin_e[0])); |
---|
597 | assign rml_next_cleanwin_e[2] = ((~rml_ecl_cleanwin_e[2] & rml_ecl_cleanwin_e[1] |
---|
598 | & rml_ecl_cleanwin_e[0]) | rml_ecl_cleanwin_e[2]); |
---|
599 | assign rml_next_cleanwin_e[1] = rml_ecl_cleanwin_e[1] ^ rml_ecl_cleanwin_e[0]; |
---|
600 | assign rml_next_cleanwin_e[0] = ~rml_ecl_cleanwin_e[0]; |
---|
601 | |
---|
602 | mux2ds #(3) next_cleanwin_mux(.dout(next_cleanwin_e[2:0]), |
---|
603 | .in0(ecl_rml_xor_data_e[2:0]), |
---|
604 | .in1(rml_next_cleanwin_e[2:0]), |
---|
605 | .sel0(~cleanwin_wen_e), |
---|
606 | .sel1(cleanwin_wen_e)); |
---|
607 | dff_s cleanwin_wen_e2m(.din(cleanwin_wen_e), .clk(clk), .q(cleanwin_wen_m), |
---|
608 | .se(se), .si(), .so()); |
---|
609 | dff_s #(3) next_cleanwin_e2m(.din(next_cleanwin_e[2:0]), .clk(clk), .q(next_cleanwin_m[2:0]), |
---|
610 | .se(se), .si(), .so()); |
---|
611 | assign cleanwin_wen_valid_m = cleanwin_wen_m; |
---|
612 | dff_s cleanwin_wen_m2w(.din(cleanwin_wen_valid_m), .clk(clk), .q(rml_cleanwin_wen_w), |
---|
613 | .se(se), .si(), .so()); |
---|
614 | dff_s #(3) next_cleanwin_m2w(.din(next_cleanwin_m[2:0]), .clk(clk), .q(next_cleanwin_w[2:0]), |
---|
615 | .se(se), .si(), .so()); |
---|
616 | assign cleanwin_wen_w = (rml_cleanwin_wen_w | ecl_rml_cleanwin_wen_w) & ~rml_kill_w; |
---|
617 | |
---|
618 | /////////////////////////////// |
---|
619 | // WSTATE logic |
---|
620 | /////////////////////////////// |
---|
621 | assign wstate_wen_w = ecl_rml_wstate_wen_w & ~rml_kill_w; |
---|
622 | |
---|
623 | /////////////////////////////// |
---|
624 | // Storage of other WMRs |
---|
625 | /////////////////////////////// |
---|
626 | sparc_exu_reg cansave_reg(.clk(clk), .se(se), |
---|
627 | .data_out(rml_ecl_cansave_d[2:0]), .thr_out(thr_d[3:0]), |
---|
628 | .thr_w(ecl_rml_thr_w[3:0]), |
---|
629 | .wen_w(cansave_wen_w), .data_in_w(next_cansave_w[2:0])); |
---|
630 | dff_s #(3) cansave_d2e(.din(rml_ecl_cansave_d[2:0]), .clk(clk), .q(rml_ecl_cansave_e[2:0]), .se(se), |
---|
631 | .si(), .so()); |
---|
632 | sparc_exu_reg canrestore_reg(.clk(clk), .se(se), |
---|
633 | .data_out(rml_ecl_canrestore_d[2:0]), .thr_out(thr_d[3:0]), |
---|
634 | .thr_w(ecl_rml_thr_w[3:0]), |
---|
635 | .wen_w(canrestore_wen_w), |
---|
636 | .data_in_w(next_canrestore_w[2:0])); |
---|
637 | dff_s #(3) canrestore_d2e(.din(rml_ecl_canrestore_d[2:0]), .clk(clk), .q(rml_ecl_canrestore_e[2:0]), |
---|
638 | .se(se), .si(), .so()); |
---|
639 | sparc_exu_reg otherwin_reg(.clk(clk), .se(se), |
---|
640 | .data_out(rml_ecl_otherwin_d[2:0]), .thr_out(thr_d[3:0]), |
---|
641 | .thr_w(ecl_rml_thr_w[3:0]), |
---|
642 | .wen_w(otherwin_wen_w), .data_in_w(next_otherwin_w[2:0])); |
---|
643 | dff_s #(3) otherwin_d2e(.din(rml_ecl_otherwin_d[2:0]), .clk(clk), .q(rml_ecl_otherwin_e[2:0]), |
---|
644 | .se(se), .si(), .so()); |
---|
645 | sparc_exu_reg cleanwin_reg(.clk(clk), .se(se), |
---|
646 | .data_out(rml_ecl_cleanwin_d[2:0]), .thr_out(thr_d[3:0]), |
---|
647 | .thr_w(ecl_rml_thr_w[3:0]), |
---|
648 | .wen_w(cleanwin_wen_w), .data_in_w(next_cleanwin_w[2:0])); |
---|
649 | dff_s #(3) cleanwin_d2e(.din(rml_ecl_cleanwin_d[2:0]), .clk(clk), .q(rml_ecl_cleanwin_e[2:0]), |
---|
650 | .se(se), .si(), .so()); |
---|
651 | sparc_exu_reg hi_wstate_reg(.clk(clk), .se(se), |
---|
652 | .data_out(rml_ecl_wstate_d[5:3]), .thr_out(thr_d[3:0]), |
---|
653 | .thr_w(ecl_rml_thr_w[3:0]), |
---|
654 | .wen_w(wstate_wen_w), |
---|
655 | .data_in_w(exu_tlu_wsr_data_w[5:3])); |
---|
656 | sparc_exu_reg lo_wstate_reg(.clk(clk), .se(se), |
---|
657 | .data_out(rml_ecl_wstate_d[2:0]), .thr_out(thr_d[3:0]), |
---|
658 | .thr_w(ecl_rml_thr_w[3:0]), |
---|
659 | .wen_w(wstate_wen_w), |
---|
660 | .data_in_w(exu_tlu_wsr_data_w[2:0])); |
---|
661 | |
---|
662 | |
---|
663 | ///////////////////////////////// |
---|
664 | // Alternate Globals control |
---|
665 | //---------------------------- |
---|
666 | ///////////////////////////////// |
---|
667 | assign rml_irf_new_agp[1:0] = tlu_exu_agp[1:0]; |
---|
668 | assign agp_tid[1:0] = tlu_exu_agp_tid[1:0]; |
---|
669 | |
---|
670 | `ifdef FPGA_SYN_1THREAD |
---|
671 | assign rml_irf_old_agp[1:0] = agp_thr0[1:0]; |
---|
672 | assign agp_wen_thr0_w = (agp_thr[0] & agp_wen) | reset; |
---|
673 | // mux between new and current value |
---|
674 | mux2ds #(2) agp_next0_mux(.dout(agp_thr0_next[1:0]), |
---|
675 | .in0(agp_thr0[1:0]), |
---|
676 | .in1(new_agp[1:0]), |
---|
677 | .sel0(~agp_wen_thr0_w), |
---|
678 | .sel1(agp_wen_thr0_w)); |
---|
679 | dff_s #(2) dff_agp_thr0(.din(agp_thr0_next[1:0]), .clk(clk), .q(agp_thr0[1:0]), |
---|
680 | .se(se), .si(), .so()); |
---|
681 | // generation of controls |
---|
682 | assign agp_wen = tlu_exu_agp_swap; |
---|
683 | assign rml_irf_swap_global = agp_wen; |
---|
684 | assign rml_irf_global_tid[1:0] = agp_tid[1:0]; |
---|
685 | |
---|
686 | // decode tids |
---|
687 | assign agp_thr[0] = ~agp_tid[1] & ~agp_tid[0]; |
---|
688 | // Decode agp input |
---|
689 | assign new_agp[1:0] = rml_irf_new_agp[1:0] | {2{reset}}; |
---|
690 | |
---|
691 | // send current global level to ecl for error logging |
---|
692 | assign rml_ecl_gl_e[1:0] = agp_thr0[1:0]; |
---|
693 | |
---|
694 | `else |
---|
695 | |
---|
696 | // Output selection for current agp |
---|
697 | mux4ds #(2) mux_agp_out1(.dout(rml_irf_old_agp[1:0]), |
---|
698 | .sel0(agp_thr[0]), |
---|
699 | .sel1(agp_thr[1]), |
---|
700 | .sel2(agp_thr[2]), |
---|
701 | .sel3(agp_thr[3]), |
---|
702 | .in0(agp_thr0[1:0]), |
---|
703 | .in1(agp_thr1[1:0]), |
---|
704 | .in2(agp_thr2[1:0]), |
---|
705 | .in3(agp_thr3[1:0])); |
---|
706 | |
---|
707 | ////////////////////////////////////// |
---|
708 | // Storage of agp |
---|
709 | ////////////////////////////////////// |
---|
710 | |
---|
711 | // enable input for each thread |
---|
712 | assign agp_wen_thr0_w = (agp_thr[0] & agp_wen) | reset; |
---|
713 | assign agp_wen_thr1_w = (agp_thr[1] & agp_wen) | reset; |
---|
714 | assign agp_wen_thr2_w = (agp_thr[2] & agp_wen) | reset; |
---|
715 | assign agp_wen_thr3_w = (agp_thr[3] & agp_wen) | reset; |
---|
716 | |
---|
717 | // mux between new and current value |
---|
718 | mux2ds #(2) agp_next0_mux(.dout(agp_thr0_next[1:0]), |
---|
719 | .in0(agp_thr0[1:0]), |
---|
720 | .in1(new_agp[1:0]), |
---|
721 | .sel0(~agp_wen_thr0_w), |
---|
722 | .sel1(agp_wen_thr0_w)); |
---|
723 | mux2ds #(2) agp_next1_mux(.dout(agp_thr1_next[1:0]), |
---|
724 | .in0(agp_thr1[1:0]), |
---|
725 | .in1(new_agp[1:0]), |
---|
726 | .sel0(~agp_wen_thr1_w), |
---|
727 | .sel1(agp_wen_thr1_w)); |
---|
728 | mux2ds #(2) agp_next2_mux(.dout(agp_thr2_next[1:0]), |
---|
729 | .in0(agp_thr2[1:0]), |
---|
730 | .in1(new_agp[1:0]), |
---|
731 | .sel0(~agp_wen_thr2_w), |
---|
732 | .sel1(agp_wen_thr2_w)); |
---|
733 | mux2ds #(2) agp_next3_mux(.dout(agp_thr3_next[1:0]), |
---|
734 | .in0(agp_thr3[1:0]), |
---|
735 | .in1(new_agp[1:0]), |
---|
736 | .sel0(~agp_wen_thr3_w), |
---|
737 | .sel1(agp_wen_thr3_w)); |
---|
738 | |
---|
739 | // store new value |
---|
740 | dff_s #(2) dff_agp_thr0(.din(agp_thr0_next[1:0]), .clk(clk), .q(agp_thr0[1:0]), |
---|
741 | .se(se), .si(), .so()); |
---|
742 | dff_s #(2) dff_agp_thr1(.din(agp_thr1_next[1:0]), .clk(clk), .q(agp_thr1[1:0]), |
---|
743 | .se(se), .si(), .so()); |
---|
744 | dff_s #(2) dff_agp_thr2(.din(agp_thr2_next[1:0]), .clk(clk), .q(agp_thr2[1:0]), |
---|
745 | .se(se), .si(), .so()); |
---|
746 | dff_s #(2) dff_agp_thr3(.din(agp_thr3_next[1:0]), .clk(clk), .q(agp_thr3[1:0]), |
---|
747 | .se(se), .si(), .so()); |
---|
748 | |
---|
749 | // generation of controls |
---|
750 | assign agp_wen = tlu_exu_agp_swap; |
---|
751 | assign rml_irf_swap_global = agp_wen; |
---|
752 | assign rml_irf_global_tid[1:0] = agp_tid[1:0]; |
---|
753 | |
---|
754 | // decode tids |
---|
755 | assign agp_thr[0] = ~agp_tid[1] & ~agp_tid[0]; |
---|
756 | assign agp_thr[1] = ~agp_tid[1] & agp_tid[0]; |
---|
757 | assign agp_thr[2] = agp_tid[1] & ~agp_tid[0]; |
---|
758 | assign agp_thr[3] = agp_tid[1] & agp_tid[0]; |
---|
759 | |
---|
760 | // Decode agp input |
---|
761 | assign new_agp[1:0] = rml_irf_new_agp[1:0] | {2{reset}}; |
---|
762 | |
---|
763 | // send current global level to ecl for error logging |
---|
764 | assign rml_ecl_gl_e[1:0] = ((tid_e[1:0] == 2'b00)? agp_thr0[1:0]: |
---|
765 | (tid_e[1:0] == 2'b01)? agp_thr1[1:0]: |
---|
766 | (tid_e[1:0] == 2'b10)? agp_thr2[1:0]: |
---|
767 | agp_thr3[1:0]); |
---|
768 | `endif // !`ifdef FPGA_SYN_1THREAD |
---|
769 | |
---|
770 | endmodule // sparc_exu_rml |
---|