1 | // ========== Copyright Header Begin ========================================== |
---|
2 | // |
---|
3 | // OpenSPARC T1 Processor File: sparc_exu_rml_cwp.v |
---|
4 | // Copyright (c) 2006 Sun Microsystems, Inc. All Rights Reserved. |
---|
5 | // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES. |
---|
6 | // |
---|
7 | // The above named program is free software; you can redistribute it and/or |
---|
8 | // modify it under the terms of the GNU General Public |
---|
9 | // License version 2 as published by the Free Software Foundation. |
---|
10 | // |
---|
11 | // The above named program is distributed in the hope that it will be |
---|
12 | // useful, but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
14 | // General Public License for more details. |
---|
15 | // |
---|
16 | // You should have received a copy of the GNU General Public |
---|
17 | // License along with this work; if not, write to the Free Software |
---|
18 | // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. |
---|
19 | // |
---|
20 | // ========== Copyright Header End ============================================ |
---|
21 | //////////////////////////////////////////////////////////////////////// |
---|
22 | /* |
---|
23 | // Module Name: sparc_exu_rml_cwp |
---|
24 | // Description: Register management logic. Contains CWP, CANSAVE, CANRESTORE |
---|
25 | // and other window management registers. Generates RF related traps |
---|
26 | // and switches the global registers to alternate globals. All the registers |
---|
27 | // are written in the W stage (there is no bypassing so they must |
---|
28 | // swap out) and will either get a new value generated by a window management |
---|
29 | // Instruction or by a WRPS instruction. The following traps can be generated: |
---|
30 | // Fill: restore with canrestore == 0 |
---|
31 | // clean_window: save with cleanwin-canrestore == 0 |
---|
32 | // spill: flushw with cansave != nwindows -2 or |
---|
33 | // save with cansave == 0 |
---|
34 | // It is assumed that the contents of the new window will get squashed |
---|
35 | // on a clean_window or fill trap so the save or restore gets executed |
---|
36 | // normally. Spill traps or WRCWPs mean that all 16 windowed registers |
---|
37 | // must be saved and restored (a 4 cycle operation). |
---|
38 | */ |
---|
39 | module sparc_exu_rml_cwp (/*AUTOARG*/ |
---|
40 | // Outputs |
---|
41 | rml_ecl_cwp_d, rml_ecl_cwp_e, exu_tlu_cwp0_w, exu_tlu_cwp1_w, |
---|
42 | exu_tlu_cwp2_w, exu_tlu_cwp3_w, rml_irf_cwpswap_tid_e, old_cwp_e, |
---|
43 | new_cwp_e, swap_locals_ins, swap_outs, exu_tlu_spill, |
---|
44 | exu_tlu_spill_wtype, exu_tlu_spill_other, exu_tlu_spill_tid, |
---|
45 | rml_ecl_swap_done, exu_tlu_cwp_cmplt, exu_tlu_cwp_cmplt_tid, |
---|
46 | exu_tlu_cwp_retry, oddwin_w, |
---|
47 | // Inputs |
---|
48 | clk, se, reset, rst_tri_en, rml_ecl_wtype_e, rml_ecl_other_e, |
---|
49 | exu_tlu_spill_e, tlu_exu_cwpccr_update_m, tlu_exu_cwp_retry_m, |
---|
50 | tlu_exu_cwp_m, thr_d, ecl_rml_thr_m, ecl_rml_thr_w, tid_e, |
---|
51 | next_cwp_w, next_cwp_e, cwp_wen_w, save_e, restore_e, |
---|
52 | ifu_exu_flushw_e, ecl_rml_cwp_wen_e, full_swap_e, rml_kill_w, next_cwp |
---|
53 | ) ; |
---|
54 | input clk; |
---|
55 | input se; |
---|
56 | input reset; |
---|
57 | input rst_tri_en; |
---|
58 | input [2:0] rml_ecl_wtype_e; |
---|
59 | input rml_ecl_other_e; |
---|
60 | input exu_tlu_spill_e; |
---|
61 | input tlu_exu_cwpccr_update_m; |
---|
62 | input tlu_exu_cwp_retry_m; |
---|
63 | input [2:0] tlu_exu_cwp_m; // for switching cwp on return from trap |
---|
64 | input [3:0] thr_d; |
---|
65 | input [3:0] ecl_rml_thr_m; |
---|
66 | input [3:0] ecl_rml_thr_w; |
---|
67 | input [1:0] tid_e; |
---|
68 | input [2:0] next_cwp_w; |
---|
69 | input [2:0] next_cwp_e; |
---|
70 | input cwp_wen_w; |
---|
71 | input save_e; |
---|
72 | input restore_e; |
---|
73 | input ifu_exu_flushw_e; |
---|
74 | input ecl_rml_cwp_wen_e; |
---|
75 | input full_swap_e; |
---|
76 | input rml_kill_w; |
---|
77 | |
---|
78 | output [2:0] rml_ecl_cwp_d; |
---|
79 | output [2:0] rml_ecl_cwp_e; |
---|
80 | output [2:0] exu_tlu_cwp0_w; |
---|
81 | output [2:0] exu_tlu_cwp1_w; |
---|
82 | output [2:0] exu_tlu_cwp2_w; |
---|
83 | output [2:0] exu_tlu_cwp3_w; |
---|
84 | output [1:0] rml_irf_cwpswap_tid_e; |
---|
85 | output [2:0] old_cwp_e; |
---|
86 | output [2:0] new_cwp_e; |
---|
87 | output swap_locals_ins; |
---|
88 | output swap_outs; |
---|
89 | output exu_tlu_spill; |
---|
90 | output [2:0] exu_tlu_spill_wtype; |
---|
91 | output exu_tlu_spill_other; |
---|
92 | output [1:0] exu_tlu_spill_tid; |
---|
93 | output [3:0] rml_ecl_swap_done; |
---|
94 | output exu_tlu_cwp_cmplt; |
---|
95 | output [1:0] exu_tlu_cwp_cmplt_tid; |
---|
96 | output exu_tlu_cwp_retry; |
---|
97 | output [3:0] oddwin_w; |
---|
98 | output [11:0] next_cwp; |
---|
99 | |
---|
100 | wire can_swap; |
---|
101 | wire swapping; |
---|
102 | wire just_swapped; |
---|
103 | wire full_swap_m; |
---|
104 | wire full_swap_w; |
---|
105 | wire [3:0] swap_done_next_cycle; |
---|
106 | wire [3:0] swap_sel_input; |
---|
107 | wire [3:0] swap_sel_tlu; |
---|
108 | wire [3:0] swap_keep_value; |
---|
109 | wire [2:0] trap_old_cwp_m; |
---|
110 | wire tlu_cwp_no_change; |
---|
111 | wire [2:0] tlu_cwp_xor; |
---|
112 | wire cwp_cmplt_next; |
---|
113 | wire [1:0] cwp_cmplt_tid_next; |
---|
114 | wire cwp_retry_next; |
---|
115 | wire cwp_fastcmplt_m; |
---|
116 | wire cwp_fastcmplt_w; |
---|
117 | wire cwpccr_update_w; |
---|
118 | wire valid_tlu_swap_w; |
---|
119 | wire [2:0] tlu_exu_cwp_w; |
---|
120 | wire tlu_exu_cwp_retry_w; |
---|
121 | |
---|
122 | wire [3:0] swap_thr; |
---|
123 | wire [1:0] swap_tid; |
---|
124 | wire [3:0] swap_req_vec; |
---|
125 | wire kill_swap_slot_w; |
---|
126 | wire [3:0] thr_e; |
---|
127 | |
---|
128 | wire [1:0] swap_slot0_state; |
---|
129 | wire [1:0] swap_slot1_state; |
---|
130 | wire [1:0] swap_slot2_state; |
---|
131 | wire [1:0] swap_slot3_state; |
---|
132 | wire [1:0] swap_slot0_state_valid; |
---|
133 | wire [1:0] swap_slot1_state_valid; |
---|
134 | wire [1:0] swap_slot2_state_valid; |
---|
135 | wire [1:0] swap_slot3_state_valid; |
---|
136 | wire [1:0] next_slot0_state; |
---|
137 | wire [1:0] next_slot1_state; |
---|
138 | wire [1:0] next_slot2_state; |
---|
139 | wire [1:0] next_slot3_state; |
---|
140 | wire [3:0] swap_keep_state; |
---|
141 | wire [3:0] swap_next_state; |
---|
142 | wire [1:0] swap_state; |
---|
143 | |
---|
144 | wire [3:0] next_swap_thr; |
---|
145 | wire [12:0] swap_data; |
---|
146 | wire [12:0] tlu_swap_data; |
---|
147 | wire [12:0] swap_input_data; |
---|
148 | wire [12:0] next_slot0_data; |
---|
149 | wire [12:0] next_slot1_data; |
---|
150 | wire [12:0] next_slot2_data; |
---|
151 | wire [12:0] next_slot3_data; |
---|
152 | wire [12:0] swap_slot0_data; |
---|
153 | wire [12:0] swap_slot1_data; |
---|
154 | wire [12:0] swap_slot2_data; |
---|
155 | wire [12:0] swap_slot3_data; |
---|
156 | |
---|
157 | wire new_cwp_sel_swap; |
---|
158 | wire [2:0] old_swap_cwp; |
---|
159 | wire [2:0] new_swap_cwp; |
---|
160 | |
---|
161 | |
---|
162 | // wires for cwp register |
---|
163 | wire [2:0] cwp_thr0; |
---|
164 | wire [2:0] cwp_thr1; |
---|
165 | wire [2:0] cwp_thr2; |
---|
166 | wire [2:0] cwp_thr3; |
---|
167 | wire [2:0] cwp_thr0_next; |
---|
168 | wire [2:0] cwp_thr1_next; |
---|
169 | wire [2:0] cwp_thr2_next; |
---|
170 | wire [2:0] cwp_thr3_next; |
---|
171 | wire cwp_wen_thr0_w; |
---|
172 | wire cwp_wen_thr1_w; |
---|
173 | wire cwp_wen_thr2_w; |
---|
174 | wire cwp_wen_thr3_w; |
---|
175 | wire [3:0] cwp_wen_tlu_w; |
---|
176 | wire [3:0] cwp_wen_spill; |
---|
177 | wire [2:0] spill_cwp; |
---|
178 | wire [3:0] cwp_wen_l; |
---|
179 | wire [2:0] old_cwp_w; |
---|
180 | wire spill_next; |
---|
181 | wire [1:0] spill_tid_next; |
---|
182 | wire spill_other_next; |
---|
183 | wire [2:0] spill_wtype_next; |
---|
184 | |
---|
185 | // decode thr_e |
---|
186 | assign thr_e[0] = ~tid_e[1] & ~tid_e[0]; |
---|
187 | assign thr_e[1] = ~tid_e[1] & tid_e[0]; |
---|
188 | assign thr_e[2] = tid_e[1] & ~tid_e[0]; |
---|
189 | assign thr_e[3] = tid_e[1] & tid_e[0]; |
---|
190 | |
---|
191 | ///////////////////////////////// |
---|
192 | // CWP output to IRF |
---|
193 | ///////////////////////////////// |
---|
194 | // Output current_d thr on saves or restores |
---|
195 | mux2ds #(2) irf_thr_mux(.dout(rml_irf_cwpswap_tid_e[1:0]), |
---|
196 | .in0(tid_e[1:0]), |
---|
197 | .in1(swap_tid[1:0]), |
---|
198 | .sel0(~can_swap), |
---|
199 | .sel1(can_swap)); |
---|
200 | // Output cwp_e for save, restore, flushw |
---|
201 | // and swap_cwp from queue for swap restores (default) |
---|
202 | // Need to have an incremented cwp for swap of outs |
---|
203 | assign old_swap_cwp[2:0] = swap_data[2:0]; |
---|
204 | assign new_swap_cwp[2:0] = swap_data[5:3]; |
---|
205 | |
---|
206 | assign new_cwp_sel_swap = can_swap; |
---|
207 | |
---|
208 | assign new_cwp_e[2:0] = (new_cwp_sel_swap)? new_swap_cwp[2:0]: next_cwp_e[2:0]; |
---|
209 | assign old_cwp_e[2:0] = (new_cwp_sel_swap)? old_swap_cwp[2:0]: rml_ecl_cwp_e[2:0]; |
---|
210 | |
---|
211 | |
---|
212 | ///////////////////////////////// |
---|
213 | // CWP register |
---|
214 | ///////////////////////////////// |
---|
215 | assign exu_tlu_cwp0_w[2:0] = cwp_thr0[2:0]; |
---|
216 | assign exu_tlu_cwp1_w[2:0] = cwp_thr1[2:0]; |
---|
217 | assign exu_tlu_cwp2_w[2:0] = cwp_thr2[2:0]; |
---|
218 | assign exu_tlu_cwp3_w[2:0] = cwp_thr3[2:0]; |
---|
219 | |
---|
220 | mux4ds #(3) mux_cwp_old_w(.dout(old_cwp_w[2:0]), .sel0(ecl_rml_thr_w[0]), |
---|
221 | .sel1(ecl_rml_thr_w[1]), .sel2(ecl_rml_thr_w[2]), |
---|
222 | .sel3(ecl_rml_thr_w[3]), .in0(cwp_thr0[2:0]), |
---|
223 | .in1(cwp_thr1[2:0]), .in2(cwp_thr2[2:0]), |
---|
224 | .in3(cwp_thr3[2:0])); |
---|
225 | |
---|
226 | // Output selection for reg |
---|
227 | mux4ds #(3) mux_cwp_out_d(.dout(rml_ecl_cwp_d[2:0]), .sel0(thr_d[0]), |
---|
228 | .sel1(thr_d[1]), .sel2(thr_d[2]), |
---|
229 | .sel3(thr_d[3]), .in0(cwp_thr0[2:0]), |
---|
230 | .in1(cwp_thr1[2:0]), .in2(cwp_thr2[2:0]), |
---|
231 | .in3(cwp_thr3[2:0])); |
---|
232 | mux4ds #(3) mux_cwp_out_e(.dout(rml_ecl_cwp_e[2:0]), .sel0(thr_e[0]), |
---|
233 | .sel1(thr_e[1]), .sel2(thr_e[2]), |
---|
234 | .sel3(thr_e[3]), .in0(cwp_thr0[2:0]), |
---|
235 | .in1(cwp_thr1[2:0]), .in2(cwp_thr2[2:0]), |
---|
236 | .in3(cwp_thr3[2:0])); |
---|
237 | mux4ds #(3) mux_cwp_trap(.dout(trap_old_cwp_m[2:0]), .sel0(ecl_rml_thr_m[0]), |
---|
238 | .sel1(ecl_rml_thr_m[1]), .sel2(ecl_rml_thr_m[2]), |
---|
239 | .sel3(ecl_rml_thr_m[3]), .in0(cwp_thr0[2:0]), |
---|
240 | .in1(cwp_thr1[2:0]), .in2(cwp_thr2[2:0]), |
---|
241 | .in3(cwp_thr3[2:0])); |
---|
242 | |
---|
243 | ////////////////////////////////////// |
---|
244 | // Storage of cwp |
---|
245 | ////////////////////////////////////// |
---|
246 | // enable input for each thread |
---|
247 | assign cwp_wen_spill[3:0] = swap_thr[3:0] & {4{spill_next}}; |
---|
248 | assign cwp_wen_thr0_w = ((ecl_rml_thr_w[0] & cwp_wen_w)) & ~cwp_wen_spill[0]; |
---|
249 | assign cwp_wen_thr1_w = ((ecl_rml_thr_w[1] & cwp_wen_w)) & ~cwp_wen_spill[1]; |
---|
250 | assign cwp_wen_thr2_w = ((ecl_rml_thr_w[2] & cwp_wen_w)) & ~cwp_wen_spill[2]; |
---|
251 | assign cwp_wen_thr3_w = ((ecl_rml_thr_w[3] & cwp_wen_w)) & ~cwp_wen_spill[3]; |
---|
252 | assign cwp_wen_tlu_w[3:0] = ecl_rml_thr_w[3:0] & {4{valid_tlu_swap_w}} & ~cwp_wen_spill & |
---|
253 | {~cwp_wen_thr3_w,~cwp_wen_thr2_w,~cwp_wen_thr1_w,~cwp_wen_thr0_w}; |
---|
254 | assign cwp_wen_l[3:0] = ~(cwp_wen_tlu_w[3:0] | cwp_wen_spill[3:0] | |
---|
255 | {cwp_wen_thr3_w,cwp_wen_thr2_w, cwp_wen_thr1_w,cwp_wen_thr0_w}); |
---|
256 | |
---|
257 | // oddwin_w is the new value of cwp[0] |
---|
258 | assign oddwin_w[3:0] = {cwp_thr3_next[0],cwp_thr2_next[0],cwp_thr1_next[0],cwp_thr0_next[0]}; |
---|
259 | assign next_cwp={cwp_thr3_next,cwp_thr2_next,cwp_thr1_next,cwp_thr0_next}; |
---|
260 | // mux between new and current value |
---|
261 | mux4ds #(3) cwp_next0_mux(.dout(cwp_thr0_next[2:0]), |
---|
262 | .in0(cwp_thr0[2:0]), |
---|
263 | .in1(next_cwp_w[2:0]), |
---|
264 | .in2(tlu_exu_cwp_w[2:0]), |
---|
265 | .in3(spill_cwp[2:0]), |
---|
266 | .sel0(cwp_wen_l[0]), |
---|
267 | .sel1(cwp_wen_thr0_w), |
---|
268 | .sel2(cwp_wen_tlu_w[0]), |
---|
269 | .sel3(cwp_wen_spill[0])); |
---|
270 | mux4ds #(3) cwp_next1_mux(.dout(cwp_thr1_next[2:0]), |
---|
271 | .in0(cwp_thr1[2:0]), |
---|
272 | .in1(next_cwp_w[2:0]), |
---|
273 | .in2(tlu_exu_cwp_w[2:0]), |
---|
274 | .in3(spill_cwp[2:0]), |
---|
275 | .sel0(cwp_wen_l[1]), |
---|
276 | .sel1(cwp_wen_thr1_w), |
---|
277 | .sel2(cwp_wen_tlu_w[1]), |
---|
278 | .sel3(cwp_wen_spill[1])); |
---|
279 | mux4ds #(3) cwp_next2_mux(.dout(cwp_thr2_next[2:0]), |
---|
280 | .in0(cwp_thr2[2:0]), |
---|
281 | .in1(next_cwp_w[2:0]), |
---|
282 | .in2(tlu_exu_cwp_w[2:0]), |
---|
283 | .in3(spill_cwp[2:0]), |
---|
284 | .sel0(cwp_wen_l[2]), |
---|
285 | .sel1(cwp_wen_thr2_w), |
---|
286 | .sel2(cwp_wen_tlu_w[2]), |
---|
287 | .sel3(cwp_wen_spill[2])); |
---|
288 | mux4ds #(3) cwp_next3_mux(.dout(cwp_thr3_next[2:0]), |
---|
289 | .in0(cwp_thr3[2:0]), |
---|
290 | .in1(next_cwp_w[2:0]), |
---|
291 | .in2(tlu_exu_cwp_w[2:0]), |
---|
292 | .in3(spill_cwp[2:0]), |
---|
293 | .sel0(cwp_wen_l[3]), |
---|
294 | .sel1(cwp_wen_thr3_w), |
---|
295 | .sel2(cwp_wen_tlu_w[3]), |
---|
296 | .sel3(cwp_wen_spill[3])); |
---|
297 | |
---|
298 | // store new value |
---|
299 | dff_s #(3) dff_cwp_thr0(.din(cwp_thr0_next[2:0]), .clk(clk), .q(cwp_thr0[2:0]), |
---|
300 | .se(se), .si(), .so()); |
---|
301 | dff_s #(3) dff_cwp_thr1(.din(cwp_thr1_next[2:0]), .clk(clk), .q(cwp_thr1[2:0]), |
---|
302 | .se(se), .si(), .so()); |
---|
303 | dff_s #(3) dff_cwp_thr2(.din(cwp_thr2_next[2:0]), .clk(clk), .q(cwp_thr2[2:0]), |
---|
304 | .se(se), .si(), .so()); |
---|
305 | dff_s #(3) dff_cwp_thr3(.din(cwp_thr3_next[2:0]), .clk(clk), .q(cwp_thr3[2:0]), |
---|
306 | .se(se), .si(), .so()); |
---|
307 | |
---|
308 | |
---|
309 | |
---|
310 | //////////////////////////////////////////// |
---|
311 | // Queue for full window swaps |
---|
312 | //////////////////////////////////////////// |
---|
313 | // A full swap of the current window requires a 2 cycle operation. |
---|
314 | // Each cycle must make sure that |
---|
315 | // there isn't another instruction trying to save or restore on top of it. |
---|
316 | // The same thread also cannot issue a swap to irf in back-to-back cycles. |
---|
317 | // Data is stored as follows: |
---|
318 | // 2:0 - CWP |
---|
319 | // 5:3 - NewCWP |
---|
320 | // 6 - !WRCWP/SPILL |
---|
321 | // 7 - Trap return |
---|
322 | // 8 - OTHER (for spill trap) |
---|
323 | // 11:9- WTYPE (for spill trap) |
---|
324 | // 12 - Retry (for trap return) |
---|
325 | dff_s full_swap_e2m(.din(full_swap_e), .clk(clk), .q(full_swap_m), .se(se), .si(), .so()); |
---|
326 | dff_s full_swap_m2w(.din(full_swap_m), .clk(clk), .q(full_swap_w), .se(se), .si(), .so()); |
---|
327 | assign swap_input_data = {1'b0, rml_ecl_wtype_e[2:0], rml_ecl_other_e, 1'b0, exu_tlu_spill_e, |
---|
328 | next_cwp_e[2:0],rml_ecl_cwp_e[2:0]}; |
---|
329 | assign tlu_swap_data = {tlu_exu_cwp_retry_w, 4'b0, 1'b1, 1'b0, tlu_exu_cwp_w[2:0], old_cwp_w[2:0]}; |
---|
330 | |
---|
331 | |
---|
332 | assign swap_sel_input[3:0] = thr_e[3:0] & {4{full_swap_e}}; |
---|
333 | assign swap_sel_tlu[3:0] = ecl_rml_thr_w[3:0] & {4{cwpccr_update_w}} |
---|
334 | & ~swap_sel_input[3:0]; |
---|
335 | assign swap_keep_value[3:0] = ~(swap_sel_tlu[3:0] | swap_sel_input[3:0]); |
---|
336 | assign swap_keep_state[3:0] = ~(swap_sel_tlu[3:0] | swap_sel_input[3:0]) & |
---|
337 | ~(swap_thr[3:0] & {4{can_swap}}); |
---|
338 | assign swap_next_state[3:0] = ~(swap_sel_tlu[3:0] | swap_sel_input[3:0]) |
---|
339 | & (swap_thr[3:0] & {4{can_swap}}); |
---|
340 | mux3ds #(13) slot0_data_mux(.dout(next_slot0_data[12:0]), |
---|
341 | .in0(swap_input_data[12:0]), |
---|
342 | .in1(tlu_swap_data[12:0]), |
---|
343 | .in2(swap_slot0_data[12:0]), |
---|
344 | .sel0(swap_sel_input[0]), |
---|
345 | .sel1(swap_sel_tlu[0]), |
---|
346 | .sel2(swap_keep_value[0])); |
---|
347 | mux3ds #(13) slot1_data_mux(.dout(next_slot1_data[12:0]), |
---|
348 | .in0(swap_input_data[12:0]), |
---|
349 | .in1(tlu_swap_data[12:0]), |
---|
350 | .in2(swap_slot1_data[12:0]), |
---|
351 | .sel0(swap_sel_input[1]), |
---|
352 | .sel1(swap_sel_tlu[1]), |
---|
353 | .sel2(swap_keep_value[1])); |
---|
354 | mux3ds #(13) slot2_data_mux(.dout(next_slot2_data[12:0]), |
---|
355 | .in0(swap_input_data[12:0]), |
---|
356 | .in1(tlu_swap_data[12:0]), |
---|
357 | .in2(swap_slot2_data[12:0]), |
---|
358 | .sel0(swap_sel_input[2]), |
---|
359 | .sel1(swap_sel_tlu[2]), |
---|
360 | .sel2(swap_keep_value[2])); |
---|
361 | mux3ds #(13) slot3_data_mux(.dout(next_slot3_data[12:0]), |
---|
362 | .in0(swap_input_data[12:0]), |
---|
363 | .in1(tlu_swap_data[12:0]), |
---|
364 | .in2(swap_slot3_data[12:0]), |
---|
365 | .sel0(swap_sel_input[3]), |
---|
366 | .sel1(swap_sel_tlu[3]), |
---|
367 | .sel2(swap_keep_value[3])); |
---|
368 | |
---|
369 | // Muxes for slot state. |
---|
370 | // There are 2 possible states: |
---|
371 | // No swap done (01) |
---|
372 | // Swap locals/ins done (10) |
---|
373 | mux4ds #(2) slot0_state_mux(.dout(next_slot0_state[1:0]), |
---|
374 | .in0(2'b10), |
---|
375 | .in1({1'b0, valid_tlu_swap_w}), |
---|
376 | .in2(swap_slot0_state_valid[1:0]), |
---|
377 | .in3({swap_slot0_state_valid[0], 1'b0}), |
---|
378 | .sel0(swap_sel_input[0]), |
---|
379 | .sel1(swap_sel_tlu[0]), |
---|
380 | .sel2(swap_keep_state[0]), |
---|
381 | .sel3(swap_next_state[0])); |
---|
382 | mux4ds #(2) slot1_state_mux(.dout(next_slot1_state[1:0]), |
---|
383 | .in0(2'b10), |
---|
384 | .in1({1'b0, valid_tlu_swap_w}), |
---|
385 | .in2(swap_slot1_state_valid[1:0]), |
---|
386 | .in3({swap_slot1_state_valid[0], 1'b0}), |
---|
387 | .sel0(swap_sel_input[1]), |
---|
388 | .sel1(swap_sel_tlu[1]), |
---|
389 | .sel2(swap_keep_state[1]), |
---|
390 | .sel3(swap_next_state[1])); |
---|
391 | mux4ds #(2) slot2_state_mux(.dout(next_slot2_state[1:0]), |
---|
392 | .in0(2'b10), |
---|
393 | .in1({1'b0, valid_tlu_swap_w}), |
---|
394 | .in2(swap_slot2_state_valid[1:0]), |
---|
395 | .in3({swap_slot2_state_valid[0], 1'b0}), |
---|
396 | .sel0(swap_sel_input[2]), |
---|
397 | .sel1(swap_sel_tlu[2]), |
---|
398 | .sel2(swap_keep_state[2]), |
---|
399 | .sel3(swap_next_state[2])); |
---|
400 | mux4ds #(2) slot3_state_mux(.dout(next_slot3_state[1:0]), |
---|
401 | .in0(2'b10), |
---|
402 | .in1({1'b0, valid_tlu_swap_w}), |
---|
403 | .in2(swap_slot3_state_valid[1:0]), |
---|
404 | .in3({swap_slot3_state_valid[0], 1'b0}), |
---|
405 | .sel0(swap_sel_input[3]), |
---|
406 | .sel1(swap_sel_tlu[3]), |
---|
407 | .sel2(swap_keep_state[3]), |
---|
408 | .sel3(swap_next_state[3])); |
---|
409 | |
---|
410 | // The kill is only assessed in w1 because back to back swaps are not allowed. |
---|
411 | // This means that a swap cannot start in the M or W stage. |
---|
412 | assign kill_swap_slot_w = rml_kill_w & full_swap_w; |
---|
413 | |
---|
414 | assign swap_slot0_state_valid[1:0] = {(swap_slot0_state[1] & ~(kill_swap_slot_w & ecl_rml_thr_w[0])), |
---|
415 | (swap_slot0_state[0])}; |
---|
416 | assign swap_slot1_state_valid[1:0] = {(swap_slot1_state[1] & ~(kill_swap_slot_w & ecl_rml_thr_w[1])), |
---|
417 | (swap_slot1_state[0])}; |
---|
418 | assign swap_slot2_state_valid[1:0] = {(swap_slot2_state[1] & ~(kill_swap_slot_w & ecl_rml_thr_w[2])), |
---|
419 | (swap_slot2_state[0])}; |
---|
420 | assign swap_slot3_state_valid[1:0] = {(swap_slot3_state[1] & ~(kill_swap_slot_w & ecl_rml_thr_w[3])), |
---|
421 | (swap_slot3_state[0])}; |
---|
422 | |
---|
423 | // Flops for cwp_swap data |
---|
424 | dffr_s #(15) slot0_data_dff(.din({next_slot0_state[1:0], next_slot0_data[12:0]}), .clk(clk), |
---|
425 | .q({swap_slot0_state[1:0], swap_slot0_data[12:0]}), .rst(reset), |
---|
426 | .se(se), .si(), .so()); |
---|
427 | dffr_s #(15) slot1_data_dff(.din({next_slot1_state[1:0], next_slot1_data[12:0]}), .clk(clk), |
---|
428 | .q({swap_slot1_state[1:0], swap_slot1_data[12:0]}), .rst(reset), |
---|
429 | .se(se), .si(), .so()); |
---|
430 | dffr_s #(15) slot2_data_dff(.din({next_slot2_state[1:0], next_slot2_data[12:0]}), .clk(clk), |
---|
431 | .q({swap_slot2_state[1:0], swap_slot2_data[12:0]}), .rst(reset), |
---|
432 | .se(se), .si(), .so()); |
---|
433 | dffr_s #(15) slot3_data_dff(.din({next_slot3_state[1:0], next_slot3_data[12:0]}), .clk(clk), |
---|
434 | .q({swap_slot3_state[1:0], swap_slot3_data[12:0]}), .rst(reset), |
---|
435 | .se(se), .si(), .so()); |
---|
436 | |
---|
437 | //////////////////////////// |
---|
438 | // Control for queue output |
---|
439 | // ========================== |
---|
440 | // The queue results go into a flop |
---|
441 | // so that they can meet timing. |
---|
442 | //////////////////////////// |
---|
443 | assign swap_req_vec[0] = (swap_slot0_state[1] | swap_slot0_state[0]); |
---|
444 | assign swap_req_vec[1] = (swap_slot1_state[1] | swap_slot1_state[0]); |
---|
445 | assign swap_req_vec[2] = (swap_slot2_state[1] | swap_slot2_state[0]); |
---|
446 | assign swap_req_vec[3] = (swap_slot3_state[1] | swap_slot3_state[0]); |
---|
447 | |
---|
448 | sparc_exu_rndrob cwp_output_queue(// Outputs |
---|
449 | .grant_vec(next_swap_thr[3:0]), |
---|
450 | // Inputs |
---|
451 | .clk(clk), |
---|
452 | .reset(reset), |
---|
453 | .se(se), |
---|
454 | .req_vec(swap_req_vec[3:0]), |
---|
455 | .advance(can_swap)); |
---|
456 | dff_s #(4) dff_swap_thr(.din(next_swap_thr[3:0]), .clk(clk), .q(swap_thr[3:0]), |
---|
457 | .se(se), .si(), .so()); |
---|
458 | assign swap_tid[1] = swap_thr[3] | swap_thr[2]; |
---|
459 | assign swap_tid[0] = swap_thr[3] | swap_thr[1]; |
---|
460 | |
---|
461 | // make selects one hot |
---|
462 | wire [3:0] swap_sel; |
---|
463 | assign swap_sel[0] = ~(swap_thr[1] | swap_thr[2] | swap_thr[3]) | rst_tri_en; |
---|
464 | assign swap_sel[3:1] = swap_thr[3:1] & {3{~rst_tri_en}}; |
---|
465 | |
---|
466 | mux4ds #(15) cwp_output_mux(.dout({swap_state[1:0], swap_data[12:0]}), |
---|
467 | .in0({swap_slot0_state[1:0], swap_slot0_data[12:0]}), |
---|
468 | .in1({swap_slot1_state[1:0], swap_slot1_data[12:0]}), |
---|
469 | .in2({swap_slot2_state[1:0], swap_slot2_data[12:0]}), |
---|
470 | .in3({swap_slot3_state[1:0], swap_slot3_data[12:0]}), |
---|
471 | .sel0(swap_sel[0]), |
---|
472 | .sel1(swap_sel[1]), |
---|
473 | .sel2(swap_sel[2]), |
---|
474 | .sel3(swap_sel[3])); |
---|
475 | |
---|
476 | // To prevent back to back swap requests on the same thread, the queue cannot swap |
---|
477 | // 2 cycles in a row. Also swaps can't start in M or W to allow flush to be checked |
---|
478 | dffr_s can_swap_flop(.din(swapping), .clk(clk), .q(just_swapped), .rst(reset), .se(se), .si(), .so()); |
---|
479 | assign can_swap = ~(save_e | restore_e | ifu_exu_flushw_e | ecl_rml_cwp_wen_e | just_swapped); |
---|
480 | assign swap_locals_ins = can_swap & swap_state[0]; |
---|
481 | assign swap_outs = can_swap & swap_state[1]; |
---|
482 | assign swapping = (can_swap & |swap_state[1:0]) | full_swap_e | full_swap_m; |
---|
483 | |
---|
484 | /////////////////////////////////// |
---|
485 | // Signals for completion of swaps |
---|
486 | /////////////////////////////////// |
---|
487 | assign spill_next = swap_data[6] & ~swap_data[7] & swap_outs; |
---|
488 | assign spill_tid_next[1:0] = swap_tid[1:0]; |
---|
489 | //assign exu_tlu_spill_ttype[8:0] = {3'b010, swap_data[8], swap_data[11:9], 2'b00}; |
---|
490 | assign spill_other_next = swap_data[8]; |
---|
491 | assign spill_wtype_next[2:0] = swap_data[11:9]; |
---|
492 | dff_s #(7) spill_dff(.din({spill_next,spill_tid_next[1:0], spill_other_next, spill_wtype_next[2:0]}), |
---|
493 | .q({exu_tlu_spill,exu_tlu_spill_tid[1:0], exu_tlu_spill_other, exu_tlu_spill_wtype[2:0]}), |
---|
494 | .clk(clk), .se(se), .si(), .so()); |
---|
495 | assign spill_cwp[2:0] = swap_data[5:3]; |
---|
496 | /* -----\/----- EXCLUDED -----\/----- |
---|
497 | dff_s #(3) spill_cwp_dff(.din(swap_data[5:3]), .clk(clk), .q(spill_cwp[2:0]), |
---|
498 | .se(se), .si(), .so()); |
---|
499 | -----/\----- EXCLUDED -----/\----- */ |
---|
500 | assign swap_done_next_cycle[3] = (swap_outs & ~swap_data[6] & ~swap_data[7] & |
---|
501 | swap_tid[1] & swap_tid[0]); |
---|
502 | assign swap_done_next_cycle[2] = (swap_outs & ~swap_data[6] & ~swap_data[7] & |
---|
503 | swap_tid[1] & ~swap_tid[0]); |
---|
504 | assign swap_done_next_cycle[1] = (swap_outs & ~swap_data[6] & ~swap_data[7] & |
---|
505 | ~swap_tid[1] & swap_tid[0]); |
---|
506 | assign swap_done_next_cycle[0] = (swap_outs & ~swap_data[6] & ~swap_data[7] & |
---|
507 | ~swap_tid[1] & ~swap_tid[0]); |
---|
508 | |
---|
509 | dff_s #(4) swap_done_dff(.din(swap_done_next_cycle[3:0]), .clk(clk), |
---|
510 | .q(rml_ecl_swap_done[3:0]), .se(se), .si(), .so()); |
---|
511 | |
---|
512 | dff_s #(4) cwp_cmplt_dff(.din({cwp_cmplt_next, cwp_cmplt_tid_next[1:0], cwp_retry_next}), |
---|
513 | .q({exu_tlu_cwp_cmplt,exu_tlu_cwp_cmplt_tid[1:0], exu_tlu_cwp_retry}), |
---|
514 | .clk(clk), .si(), .so(), .se(se)); |
---|
515 | assign cwp_cmplt_next = swap_outs & swap_data[7]; |
---|
516 | assign cwp_cmplt_tid_next[1:0] = swap_tid[1:0]; |
---|
517 | assign cwp_retry_next = swap_data[12]; |
---|
518 | |
---|
519 | assign tlu_cwp_xor[2:0] = trap_old_cwp_m[2:0] ^ tlu_exu_cwp_m[2:0]; |
---|
520 | assign tlu_cwp_no_change = ~(tlu_cwp_xor[2] | tlu_cwp_xor[1] | tlu_cwp_xor[0]); |
---|
521 | assign cwp_fastcmplt_m = tlu_exu_cwpccr_update_m & tlu_cwp_no_change; |
---|
522 | |
---|
523 | dff_s fastcmplt_dff(.din(cwp_fastcmplt_m), .clk(clk), |
---|
524 | .q(cwp_fastcmplt_w), .se(se), .si(), .so()); |
---|
525 | |
---|
526 | /////////////////////////////////////////////////////////// |
---|
527 | // Pipe along tlu_exu_done/retry so inst_vld can be caught |
---|
528 | /////////////////////////////////////////////////////////// |
---|
529 | dff_s #(5) tlu_data_dff(.q({cwpccr_update_w,tlu_exu_cwp_w[2:0],tlu_exu_cwp_retry_w}), |
---|
530 | .din({tlu_exu_cwpccr_update_m,tlu_exu_cwp_m[2:0],tlu_exu_cwp_retry_m}), |
---|
531 | .clk(clk), .se(se), .si(), .so()); |
---|
532 | assign valid_tlu_swap_w = cwpccr_update_w & ~rml_kill_w & ~cwp_fastcmplt_w; |
---|
533 | |
---|
534 | endmodule // sparc_exu_rml_cwp |
---|