1 | //***************************************************************************** |
---|
2 | // DISCLAIMER OF LIABILITY |
---|
3 | // |
---|
4 | // This file contains proprietary and confidential information of |
---|
5 | // Xilinx, Inc. ("Xilinx"), that is distributed under a license |
---|
6 | // from Xilinx, and may be used, copied and/or disclosed only |
---|
7 | // pursuant to the terms of a valid license agreement with Xilinx. |
---|
8 | // |
---|
9 | // XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION |
---|
10 | // ("MATERIALS") "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER |
---|
11 | // EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING WITHOUT |
---|
12 | // LIMITATION, ANY WARRANTY WITH RESPECT TO NONINFRINGEMENT, |
---|
13 | // MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. Xilinx |
---|
14 | // does not warrant that functions included in the Materials will |
---|
15 | // meet the requirements of Licensee, or that the operation of the |
---|
16 | // Materials will be uninterrupted or error-free, or that defects |
---|
17 | // in the Materials will be corrected. Furthermore, Xilinx does |
---|
18 | // not warrant or make any representations regarding use, or the |
---|
19 | // results of the use, of the Materials in terms of correctness, |
---|
20 | // accuracy, reliability or otherwise. |
---|
21 | // |
---|
22 | // Xilinx products are not designed or intended to be fail-safe, |
---|
23 | // or for use in any application requiring fail-safe performance, |
---|
24 | // such as life-support or safety devices or systems, Class III |
---|
25 | // medical devices, nuclear facilities, applications related to |
---|
26 | // the deployment of airbags, or any other applications that could |
---|
27 | // lead to death, personal injury or severe property or |
---|
28 | // environmental damage (individually and collectively, "critical |
---|
29 | // applications"). Customer assumes the sole risk and liability |
---|
30 | // of any use of Xilinx products in critical applications, |
---|
31 | // subject only to applicable laws and regulations governing |
---|
32 | // limitations on product liability. |
---|
33 | // |
---|
34 | // Copyright 2006, 2007, 2008 Xilinx, Inc. |
---|
35 | // All rights reserved. |
---|
36 | // |
---|
37 | // This disclaimer and copyright notice must be retained as part |
---|
38 | // of this file at all times. |
---|
39 | //***************************************************************************** |
---|
40 | // ____ ____ |
---|
41 | // / /\/ / |
---|
42 | // /___/ \ / Vendor: Xilinx |
---|
43 | // \ \ \/ Version: 3.6 |
---|
44 | // \ \ Application: MIG |
---|
45 | // / / Filename: ddr2_ctrl.v |
---|
46 | // /___/ /\ Date Last Modified: $Date: 2010/06/29 12:03:43 $ |
---|
47 | // \ \ / \ Date Created: Wed Aug 30 2006 |
---|
48 | // \___\/\___\ |
---|
49 | // |
---|
50 | // |
---|
51 | //Device: Virtex-5 |
---|
52 | //Design Name: DDR/DDR2 |
---|
53 | //Purpose: |
---|
54 | // This module is the main control logic of the memory interface. All |
---|
55 | // commands are issued from here according to the burst, CAS Latency and the |
---|
56 | // user commands. |
---|
57 | //Reference: |
---|
58 | //Revision History: |
---|
59 | // Rev 1.2 - Fixed auto refresh to activate bug. KP 11-19-2007 |
---|
60 | // Rev 1.3 - For Dual Rank parts support CS logic modified. KP. 05/08/08 |
---|
61 | // Rev 1.4 - AUTO_REFRESH_WAIT state modified for Auto Refresh flag asserted |
---|
62 | // immediately after calibration is completed. KP. 07/28/08 |
---|
63 | // Rev 1.5 - Assignment of bank_valid_r is modified to fix a bug in |
---|
64 | // Bank Management logic. PK. 10/29/08 |
---|
65 | //***************************************************************************** |
---|
66 | |
---|
67 | `timescale 1ns/1ps |
---|
68 | |
---|
69 | module ddr2_ctrl # |
---|
70 | ( |
---|
71 | // Following parameters are for 72-bit RDIMM design (for ML561 Reference |
---|
72 | // board design). Actual values may be different. Actual parameters values |
---|
73 | // are passed from design top module dram module. Please refer to |
---|
74 | // the dram module for actual values. |
---|
75 | parameter BANK_WIDTH = 2, |
---|
76 | parameter COL_WIDTH = 10, |
---|
77 | parameter CS_BITS = 0, |
---|
78 | parameter CS_NUM = 1, |
---|
79 | parameter ROW_WIDTH = 14, |
---|
80 | parameter ADDITIVE_LAT = 0, |
---|
81 | parameter BURST_LEN = 4, |
---|
82 | parameter CAS_LAT = 5, |
---|
83 | parameter ECC_ENABLE = 0, |
---|
84 | parameter REG_ENABLE = 1, |
---|
85 | parameter TREFI_NS = 7800, |
---|
86 | parameter TRAS = 40000, |
---|
87 | parameter TRCD = 15000, |
---|
88 | parameter TRRD = 10000, |
---|
89 | parameter TRFC = 105000, |
---|
90 | parameter TRP = 15000, |
---|
91 | parameter TRTP = 7500, |
---|
92 | parameter TWR = 15000, |
---|
93 | parameter TWTR = 10000, |
---|
94 | parameter CLK_PERIOD = 3000, |
---|
95 | parameter MULTI_BANK_EN = 1, |
---|
96 | parameter TWO_T_TIME_EN = 0, |
---|
97 | parameter DDR_TYPE = 1 |
---|
98 | ) |
---|
99 | ( |
---|
100 | input clk, |
---|
101 | input rst, |
---|
102 | input [2:0] af_cmd, |
---|
103 | input [30:0] af_addr, |
---|
104 | input af_empty, |
---|
105 | input phy_init_done, |
---|
106 | output ctrl_ref_flag, |
---|
107 | output ctrl_af_rden, |
---|
108 | output reg ctrl_wren, |
---|
109 | output reg ctrl_rden, |
---|
110 | output [ROW_WIDTH-1:0] ctrl_addr, |
---|
111 | output [BANK_WIDTH-1:0] ctrl_ba, |
---|
112 | output ctrl_ras_n, |
---|
113 | output ctrl_cas_n, |
---|
114 | output ctrl_we_n, |
---|
115 | output [CS_NUM-1:0] ctrl_cs_n |
---|
116 | ); |
---|
117 | |
---|
118 | // input address split into various ranges |
---|
119 | localparam ROW_RANGE_START = COL_WIDTH; |
---|
120 | localparam ROW_RANGE_END = ROW_WIDTH + ROW_RANGE_START - 1; |
---|
121 | localparam BANK_RANGE_START = ROW_RANGE_END + 1; |
---|
122 | localparam BANK_RANGE_END = BANK_WIDTH + BANK_RANGE_START - 1; |
---|
123 | localparam CS_RANGE_START = BANK_RANGE_START + BANK_WIDTH; |
---|
124 | localparam CS_RANGE_END = CS_BITS + CS_RANGE_START - 1; |
---|
125 | // compare address (for determining bank/row hits) split into various ranges |
---|
126 | // (compare address doesn't include column bits) |
---|
127 | localparam CMP_WIDTH = CS_BITS + BANK_WIDTH + ROW_WIDTH; |
---|
128 | localparam CMP_ROW_RANGE_START = 0; |
---|
129 | localparam CMP_ROW_RANGE_END = ROW_WIDTH + CMP_ROW_RANGE_START - 1; |
---|
130 | localparam CMP_BANK_RANGE_START = CMP_ROW_RANGE_END + 1; |
---|
131 | localparam CMP_BANK_RANGE_END = BANK_WIDTH + CMP_BANK_RANGE_START - 1; |
---|
132 | localparam CMP_CS_RANGE_START = CMP_BANK_RANGE_END + 1; |
---|
133 | localparam CMP_CS_RANGE_END = CS_BITS + CMP_CS_RANGE_START-1; |
---|
134 | |
---|
135 | localparam BURST_LEN_DIV2 = BURST_LEN / 2; |
---|
136 | localparam OPEN_BANK_NUM = 4; |
---|
137 | localparam CS_BITS_FIX = (CS_BITS == 0) ? 1 : CS_BITS; |
---|
138 | |
---|
139 | // calculation counters based on clock cycle and memory parameters |
---|
140 | // TRAS: ACTIVE->PRECHARGE interval - 2 |
---|
141 | localparam integer TRAS_CYC = (TRAS + CLK_PERIOD)/CLK_PERIOD; |
---|
142 | // TRCD: ACTIVE->READ/WRITE interval - 3 (for DDR2 factor in ADD_LAT) |
---|
143 | localparam integer TRRD_CYC = (TRRD + CLK_PERIOD)/CLK_PERIOD; |
---|
144 | localparam integer TRCD_CYC = (((TRCD + CLK_PERIOD)/CLK_PERIOD) > |
---|
145 | ADDITIVE_LAT )? |
---|
146 | ((TRCD+CLK_PERIOD)/ CLK_PERIOD) - ADDITIVE_LAT : 0; |
---|
147 | // TRFC: REFRESH->REFRESH, REFRESH->ACTIVE interval - 2 |
---|
148 | localparam integer TRFC_CYC = (TRFC + CLK_PERIOD)/CLK_PERIOD; |
---|
149 | // TRP: PRECHARGE->COMMAND interval - 2 |
---|
150 | // for precharge all add 1 extra clock cycle |
---|
151 | localparam integer TRP_CYC = ((TRP + CLK_PERIOD)/CLK_PERIOD) +1; |
---|
152 | // TRTP: READ->PRECHARGE interval - 2 (Al + BL/2 + (max (TRTP, 2tck))-2 |
---|
153 | localparam integer TRTP_TMP_MIN = (((TRTP + CLK_PERIOD)/CLK_PERIOD) >= 2)? |
---|
154 | ((TRTP + CLK_PERIOD)/CLK_PERIOD) : 2; |
---|
155 | localparam integer TRTP_CYC = TRTP_TMP_MIN + ADDITIVE_LAT |
---|
156 | + BURST_LEN_DIV2 - 2; |
---|
157 | // TWR: WRITE->PRECHARGE interval - 2 |
---|
158 | localparam integer WR_LAT = (DDR_TYPE > 0) ? CAS_LAT + ADDITIVE_LAT - 1 : 1; |
---|
159 | localparam integer TWR_CYC = ((TWR + CLK_PERIOD)/CLK_PERIOD) + |
---|
160 | WR_LAT + BURST_LEN_DIV2 ; |
---|
161 | // TWTR: WRITE->READ interval - 3 (for DDR1, TWTR = 2 clks) |
---|
162 | // DDR2 = CL-1 + BL/2 +TWTR |
---|
163 | localparam integer TWTR_TMP_MIN = ((TWTR + CLK_PERIOD) % CLK_PERIOD)?((TWTR + CLK_PERIOD)/CLK_PERIOD) + 1:(TWTR + CLK_PERIOD)/CLK_PERIOD; |
---|
164 | localparam integer TWTR_CYC = (DDR_TYPE > 0) ? (TWTR_TMP_MIN + (CAS_LAT -1) |
---|
165 | + BURST_LEN_DIV2 ): 2; |
---|
166 | |
---|
167 | // TRTW: READ->WRITE interval - 3 |
---|
168 | // DDR1: CL + (BL/2) |
---|
169 | // DDR2: (BL/2) + 2. Two more clocks are added to |
---|
170 | // the DDR2 counter to account for the delay in |
---|
171 | // arrival of the DQS during reads (pcb trace + buffer |
---|
172 | // delays + memory parameters). |
---|
173 | localparam TRTW_CYC = (DDR_TYPE > 0) ? BURST_LEN_DIV2 + 4 : |
---|
174 | (CAS_LAT == 25) ? 2 + BURST_LEN_DIV2 : CAS_LAT + BURST_LEN_DIV2; |
---|
175 | |
---|
176 | localparam integer CAS_LAT_RD = (CAS_LAT == 25) ? 2 : CAS_LAT; |
---|
177 | |
---|
178 | // Make sure all values >= 0 (some may be = 0) |
---|
179 | localparam TRAS_COUNT = (TRAS_CYC > 0) ? TRAS_CYC : 0; |
---|
180 | localparam TRCD_COUNT = (TRCD_CYC > 0) ? TRCD_CYC : 0; |
---|
181 | localparam TRRD_COUNT = (TRRD_CYC > 0) ? TRRD_CYC : 0; |
---|
182 | localparam TRFC_COUNT = (TRFC_CYC > 0) ? TRFC_CYC : 0; |
---|
183 | localparam TRP_COUNT = (TRP_CYC > 0) ? TRP_CYC : 0; |
---|
184 | localparam TRTP_COUNT = (TRTP_CYC > 0) ? TRTP_CYC : 0; |
---|
185 | localparam TWR_COUNT = (TWR_CYC > 0) ? TWR_CYC : 0; |
---|
186 | localparam TWTR_COUNT = (TWTR_CYC > 0) ? TWTR_CYC : 0; |
---|
187 | localparam TRTW_COUNT = (TRTW_CYC > 0) ? TRTW_CYC : 0; |
---|
188 | |
---|
189 | // Auto refresh interval |
---|
190 | localparam TREFI_COUNT = ((TREFI_NS * 1000)/CLK_PERIOD) - 1; |
---|
191 | |
---|
192 | // memory controller states |
---|
193 | localparam CTRL_IDLE = 5'h00; |
---|
194 | localparam CTRL_PRECHARGE = 5'h01; |
---|
195 | localparam CTRL_PRECHARGE_WAIT = 5'h02; |
---|
196 | localparam CTRL_AUTO_REFRESH = 5'h03; |
---|
197 | localparam CTRL_AUTO_REFRESH_WAIT = 5'h04; |
---|
198 | localparam CTRL_ACTIVE = 5'h05; |
---|
199 | localparam CTRL_ACTIVE_WAIT = 5'h06; |
---|
200 | localparam CTRL_BURST_READ = 5'h07; |
---|
201 | localparam CTRL_READ_WAIT = 5'h08; |
---|
202 | localparam CTRL_BURST_WRITE = 5'h09; |
---|
203 | localparam CTRL_WRITE_WAIT = 5'h0A; |
---|
204 | localparam CTRL_PRECHARGE_WAIT1 = 5'h0B; |
---|
205 | |
---|
206 | |
---|
207 | reg [CMP_WIDTH-1:0] act_addr_r; |
---|
208 | wire [30:0] af_addr_r; |
---|
209 | reg [30:0] af_addr_r1; |
---|
210 | reg [30:0] af_addr_r2; |
---|
211 | reg [30:0] af_addr_r3; |
---|
212 | wire [2:0] af_cmd_r; |
---|
213 | reg [2:0] af_cmd_r1; |
---|
214 | reg [2:0] af_cmd_r2; |
---|
215 | reg af_valid_r; |
---|
216 | reg af_valid_r1; |
---|
217 | reg af_valid_r2; |
---|
218 | reg [CS_BITS_FIX :0] auto_cnt_r; |
---|
219 | reg auto_ref_r; |
---|
220 | reg [(OPEN_BANK_NUM*CMP_WIDTH)-1:0] bank_cmp_addr_r; |
---|
221 | reg [OPEN_BANK_NUM-1:0] bank_hit; |
---|
222 | reg [OPEN_BANK_NUM-1:0] bank_hit_r; |
---|
223 | reg [OPEN_BANK_NUM-1:0] bank_hit_r1; |
---|
224 | reg [OPEN_BANK_NUM-1:0] bank_valid_r; |
---|
225 | reg bank_conflict_r; |
---|
226 | reg conflict_resolved_r; |
---|
227 | reg ctrl_af_rden_r; |
---|
228 | reg conflict_detect_r; |
---|
229 | wire conflict_detect; |
---|
230 | reg cs_change_r; |
---|
231 | reg cs_change_sticky_r; |
---|
232 | reg [ROW_WIDTH-1:0] ddr_addr_r; |
---|
233 | wire [ROW_WIDTH-1:0] ddr_addr_col; |
---|
234 | wire [ROW_WIDTH-1:0] ddr_addr_row; |
---|
235 | reg [BANK_WIDTH-1:0] ddr_ba_r; |
---|
236 | reg ddr_cas_n_r; |
---|
237 | reg [CS_NUM-1:0] ddr_cs_n_r; |
---|
238 | reg ddr_ras_n_r; |
---|
239 | reg ddr_we_n_r; |
---|
240 | reg [4:0] next_state; |
---|
241 | reg no_precharge_wait_r; |
---|
242 | reg no_precharge_r; |
---|
243 | reg no_precharge_r1; |
---|
244 | reg phy_init_done_r; |
---|
245 | reg [4:0] precharge_ok_cnt_r; |
---|
246 | reg precharge_ok_r; |
---|
247 | reg [4:0] ras_cnt_r; |
---|
248 | reg [3:0] rcd_cnt_r; |
---|
249 | reg rcd_cnt_ok_r; |
---|
250 | reg [2:0] rdburst_cnt_r; |
---|
251 | reg rdburst_ok_r; |
---|
252 | reg rdburst_rden_ok_r; |
---|
253 | reg rd_af_flag_r; |
---|
254 | wire rd_flag; |
---|
255 | reg rd_flag_r; |
---|
256 | reg [4:0] rd_to_wr_cnt_r; |
---|
257 | reg rd_to_wr_ok_r; |
---|
258 | reg ref_flag_r; |
---|
259 | reg [11:0] refi_cnt_r; |
---|
260 | reg refi_cnt_ok_r; |
---|
261 | reg rst_r |
---|
262 | /* synthesis syn_preserve = 1 */; |
---|
263 | reg rst_r1 |
---|
264 | /* synthesis syn_maxfan = 10 */; |
---|
265 | reg [7:0] rfc_cnt_r; |
---|
266 | reg rfc_ok_r; |
---|
267 | reg [3:0] row_miss; |
---|
268 | reg [3:0] row_conflict_r; |
---|
269 | reg [3:0] rp_cnt_r; |
---|
270 | reg rp_cnt_ok_r; |
---|
271 | reg [CMP_WIDTH-1:0] sb_open_add_r; |
---|
272 | reg [4:0] state_r; |
---|
273 | reg [4:0] state_r1; |
---|
274 | wire sm_rden; |
---|
275 | reg sm_rden_r; |
---|
276 | reg [2:0] trrd_cnt_r; |
---|
277 | reg trrd_cnt_ok_r; |
---|
278 | reg [2:0] two_t_enable_r; |
---|
279 | reg [CS_NUM-1:0] two_t_enable_r1; |
---|
280 | reg [2:0] wrburst_cnt_r; |
---|
281 | reg wrburst_ok_r; |
---|
282 | reg wrburst_wren_ok_r; |
---|
283 | wire wr_flag; |
---|
284 | reg wr_flag_r; |
---|
285 | reg [4:0] wr_to_rd_cnt_r; |
---|
286 | reg wr_to_rd_ok_r; |
---|
287 | |
---|
288 | // XST attributes for local reset "tree" |
---|
289 | // synthesis attribute shreg_extract of rst_r is "no"; |
---|
290 | // synthesis attribute shreg_extract of rst_r1 is "no"; |
---|
291 | // synthesis attribute equivalent_register_removal of rst_r is "no" |
---|
292 | |
---|
293 | //*************************************************************************** |
---|
294 | |
---|
295 | // sm_rden is used to assert read enable to the address FIFO |
---|
296 | assign sm_rden = ((state_r == CTRL_BURST_WRITE) || |
---|
297 | (state_r == CTRL_BURST_READ)) ; |
---|
298 | |
---|
299 | // assert read flag to the adress FIFO |
---|
300 | assign ctrl_af_rden = sm_rden || rd_af_flag_r; |
---|
301 | |
---|
302 | // local reset "tree" for controller logic only. Create this to ease timing |
---|
303 | // on reset path. Prohibit equivalent register removal on RST_R to prevent |
---|
304 | // "sharing" with other local reset trees (caution: make sure global fanout |
---|
305 | // limit is set to large enough value, otherwise SLICES may be used for |
---|
306 | // fanout control on RST_R. |
---|
307 | always @(posedge clk) begin |
---|
308 | rst_r <= rst; |
---|
309 | rst_r1 <= rst_r; |
---|
310 | end |
---|
311 | |
---|
312 | //***************************************************************** |
---|
313 | // interpret commands from Command/Address FIFO |
---|
314 | //***************************************************************** |
---|
315 | |
---|
316 | assign wr_flag = (af_valid_r2) ? ((af_cmd_r2 == 3'b000) ? 1'b1 : 1'b0): 1'b0; |
---|
317 | assign rd_flag = (af_valid_r2) ? ((af_cmd_r2 == 3'b001) ? 1'b1 : 1'b0): 1'b0; |
---|
318 | |
---|
319 | always @(posedge clk) begin |
---|
320 | rd_flag_r <= rd_flag; |
---|
321 | wr_flag_r <= wr_flag; |
---|
322 | end |
---|
323 | |
---|
324 | ////////////////////////////////////////////////// |
---|
325 | // The data from the address FIFO is fetched and |
---|
326 | // stored in two register stages. The data will be |
---|
327 | // pulled out of the second register stage whenever |
---|
328 | // the state machine can handle new data from the |
---|
329 | // address FIFO. |
---|
330 | |
---|
331 | // This flag is asserted when there is no |
---|
332 | // cmd & address in the pipe. When there is |
---|
333 | // valid cmd & addr from the address FIFO the |
---|
334 | // af_valid signals will be asserted. This flag will |
---|
335 | // be set the cycle af_valid_r is de-asserted. |
---|
336 | always @(posedge clk) begin |
---|
337 | // for simulation purposes - to force CTRL_AF_RDEN low during reset |
---|
338 | if (rst_r1) |
---|
339 | rd_af_flag_r <= 1'd0; |
---|
340 | else if((ctrl_af_rden_r) || |
---|
341 | (rd_af_flag_r && (af_valid_r || af_valid_r1))) |
---|
342 | rd_af_flag_r <= 1'd0; |
---|
343 | else if (~af_valid_r1 || ~af_valid_r) |
---|
344 | rd_af_flag_r <= 1'd1; |
---|
345 | |
---|
346 | end |
---|
347 | |
---|
348 | // First register stage for the cmd & add from the FIFO. |
---|
349 | // The af_valid_r signal gives the status of the data |
---|
350 | // in this stage. The af_valid_r will be asserted when there |
---|
351 | // is valid data. This register stage will be updated |
---|
352 | // 1. read to the FIFO and the FIFO not empty |
---|
353 | // 2. After write and read states |
---|
354 | // 3. The valid signal is not asserted in the last stage. |
---|
355 | always @(posedge clk) begin |
---|
356 | if (rst_r1)begin |
---|
357 | af_valid_r <= 1'd0; |
---|
358 | end else begin |
---|
359 | if (ctrl_af_rden_r || sm_rden_r || ~af_valid_r1 |
---|
360 | || ~af_valid_r2)begin |
---|
361 | af_valid_r <= ctrl_af_rden_r; |
---|
362 | end |
---|
363 | end |
---|
364 | end |
---|
365 | |
---|
366 | // The output register in the FIFO is used. The addr |
---|
367 | // and command are already registered in the FIFO. |
---|
368 | assign af_addr_r = af_addr; |
---|
369 | assign af_cmd_r = af_cmd; |
---|
370 | |
---|
371 | // Second register stage for the cmd & add from the FIFO. |
---|
372 | // The af_valid_r1 signal gives the status of the data |
---|
373 | // in this stage. The af_valid_r will be asserted when there |
---|
374 | // is valid data. This register stage will be updated |
---|
375 | // 1. read to the FIFO and the FIFO not empty and there |
---|
376 | // is no valid data on this stage |
---|
377 | // 2. After write and read states |
---|
378 | // 3. The valid signal is not asserted in the last stage. |
---|
379 | always@(posedge clk) begin |
---|
380 | if (rst_r1)begin |
---|
381 | af_valid_r1 <= 1'd0; |
---|
382 | af_addr_r1 <= {31{1'bx}}; |
---|
383 | af_cmd_r1 <= {3{1'bx}}; |
---|
384 | end else if (~af_valid_r1 || sm_rden_r || |
---|
385 | ~af_valid_r2) begin |
---|
386 | af_valid_r1 <= af_valid_r; |
---|
387 | af_addr_r1 <= af_addr_r; |
---|
388 | af_cmd_r1 <= af_cmd_r; |
---|
389 | end |
---|
390 | end |
---|
391 | |
---|
392 | // The state machine uses the address and command in this |
---|
393 | // register stage. The data is fetched from the second |
---|
394 | // register stage whenever the state machine can accept new |
---|
395 | // addr. The conflict flags are also generated based on the |
---|
396 | // second register stage and updated when the new address |
---|
397 | // is loaded for the state machine. |
---|
398 | always@(posedge clk) begin |
---|
399 | if (rst_r1)begin |
---|
400 | af_valid_r2 <= 1'd0; |
---|
401 | af_addr_r2 <= {31{1'bx}}; |
---|
402 | af_cmd_r2 <= {3{1'bx}}; |
---|
403 | bank_hit_r <= {OPEN_BANK_NUM{1'bx}}; |
---|
404 | bank_conflict_r <= 1'bx; |
---|
405 | row_conflict_r <= 4'bx; |
---|
406 | end else if(sm_rden || ~af_valid_r2)begin |
---|
407 | af_valid_r2 <= af_valid_r1; |
---|
408 | af_addr_r2 <= af_addr_r1; |
---|
409 | af_cmd_r2 <= af_cmd_r1; |
---|
410 | if(MULTI_BANK_EN)begin |
---|
411 | bank_hit_r <= bank_hit; |
---|
412 | row_conflict_r <= row_miss; |
---|
413 | bank_conflict_r <= (~(|bank_hit)); |
---|
414 | end else begin |
---|
415 | bank_hit_r <= {OPEN_BANK_NUM{1'b0}}; |
---|
416 | bank_conflict_r <= 1'd0; |
---|
417 | row_conflict_r[0] <= (af_addr_r1[CS_RANGE_END:ROW_RANGE_START] |
---|
418 | != sb_open_add_r[CMP_WIDTH-1:0]); |
---|
419 | end |
---|
420 | end |
---|
421 | end // always@ (posedge clk) |
---|
422 | |
---|
423 | //detecting cs change for multi chip select case |
---|
424 | generate |
---|
425 | if(CS_NUM > 1) begin: gen_cs_change |
---|
426 | always @(posedge clk) begin |
---|
427 | if(sm_rden || ~af_valid_r2)begin |
---|
428 | cs_change_r <= af_addr_r1[CS_RANGE_END:CS_RANGE_START] != |
---|
429 | af_addr_r2[CS_RANGE_END:CS_RANGE_START] ; |
---|
430 | cs_change_sticky_r <= |
---|
431 | af_addr_r1[CS_RANGE_END:CS_RANGE_START] != |
---|
432 | af_addr_r2[CS_RANGE_END:CS_RANGE_START] ; |
---|
433 | end else |
---|
434 | cs_change_r <= 1'd0; |
---|
435 | end |
---|
436 | end // block: gen_cs_change |
---|
437 | else begin: gen_cs_0 |
---|
438 | always @(posedge clk) begin |
---|
439 | cs_change_r <= 1'd0; |
---|
440 | cs_change_sticky_r <= 1'd0; |
---|
441 | end |
---|
442 | end |
---|
443 | endgenerate |
---|
444 | |
---|
445 | assign conflict_detect = (MULTI_BANK_EN) ? |
---|
446 | ((|(row_conflict_r[3:0] & bank_hit_r[3:0])) |
---|
447 | | bank_conflict_r) & af_valid_r2 : |
---|
448 | row_conflict_r[0] & af_valid_r2; |
---|
449 | |
---|
450 | always @(posedge clk) begin |
---|
451 | conflict_detect_r <= conflict_detect; |
---|
452 | sm_rden_r <= sm_rden; |
---|
453 | af_addr_r3 <= af_addr_r2; |
---|
454 | ctrl_af_rden_r <= ctrl_af_rden & ~af_empty; |
---|
455 | end |
---|
456 | |
---|
457 | // conflict resolved signal. When this signal is asserted |
---|
458 | // the conflict is resolved. The address to be compared |
---|
459 | // for the conflict_resolved_r will be stored in act_add_r |
---|
460 | // when the bank is opened. |
---|
461 | always @(posedge clk) begin |
---|
462 | conflict_resolved_r <= (act_addr_r == |
---|
463 | af_addr_r2[CS_RANGE_END:ROW_RANGE_START]); |
---|
464 | if((state_r == CTRL_ACTIVE)) |
---|
465 | act_addr_r <= af_addr_r2[CS_RANGE_END:ROW_RANGE_START]; |
---|
466 | end |
---|
467 | |
---|
468 | //*************************************************************************** |
---|
469 | // Bank management logic |
---|
470 | // Semi-hardcoded for now for 4 banks |
---|
471 | // will keep multiple banks open if MULTI_BANK_EN is true. |
---|
472 | //*************************************************************************** |
---|
473 | |
---|
474 | genvar bank_i; |
---|
475 | generate // if multiple bank option chosen |
---|
476 | if(MULTI_BANK_EN) begin: gen_multi_bank_open |
---|
477 | |
---|
478 | for (bank_i = 0; bank_i < OPEN_BANK_NUM; |
---|
479 | bank_i = bank_i + 1) begin: gen_bank_hit1 |
---|
480 | // asserted if bank address match + open bank entry is valid |
---|
481 | always @(*) begin |
---|
482 | bank_hit[bank_i] |
---|
483 | = ((bank_cmp_addr_r[(CMP_WIDTH*(bank_i+1))-1: |
---|
484 | (CMP_WIDTH*bank_i)+ROW_WIDTH] == |
---|
485 | af_addr_r1[CS_RANGE_END:BANK_RANGE_START]) && |
---|
486 | bank_valid_r[bank_i]); |
---|
487 | // asserted if row address match (no check for bank entry valid, rely |
---|
488 | // on this term to be used in conjunction with BANK_HIT[]) |
---|
489 | row_miss[bank_i] |
---|
490 | = (bank_cmp_addr_r[(CMP_WIDTH*bank_i)+ROW_WIDTH-1: |
---|
491 | (CMP_WIDTH*bank_i)] != |
---|
492 | af_addr_r1[ROW_RANGE_END:ROW_RANGE_START]); |
---|
493 | end |
---|
494 | end |
---|
495 | |
---|
496 | always @(posedge clk) begin |
---|
497 | no_precharge_wait_r <= bank_valid_r[3] & bank_conflict_r; |
---|
498 | bank_hit_r1 <= bank_hit_r; |
---|
499 | end |
---|
500 | |
---|
501 | always@(*) |
---|
502 | no_precharge_r = ~bank_valid_r[3] & bank_conflict_r; |
---|
503 | |
---|
504 | always@(posedge clk) |
---|
505 | no_precharge_r1 <= no_precharge_r; |
---|
506 | |
---|
507 | |
---|
508 | always @(posedge clk) begin |
---|
509 | // Clear all bank valid bits during AR (i.e. since all banks get |
---|
510 | // precharged during auto-refresh) |
---|
511 | if ((state_r1 == CTRL_AUTO_REFRESH)) begin |
---|
512 | bank_valid_r <= {OPEN_BANK_NUM{1'b0}}; |
---|
513 | bank_cmp_addr_r <= {(OPEN_BANK_NUM*CMP_WIDTH-1){1'b0}}; |
---|
514 | end else begin |
---|
515 | if (state_r1 == CTRL_ACTIVE) begin |
---|
516 | // 00 is always going to have the latest bank and row. |
---|
517 | bank_cmp_addr_r[CMP_WIDTH-1:0] |
---|
518 | <= af_addr_r3[CS_RANGE_END:ROW_RANGE_START]; |
---|
519 | // This indicates the bank was activated |
---|
520 | bank_valid_r[0] <= 1'b1; |
---|
521 | |
---|
522 | case ({bank_hit_r1[2:0]}) |
---|
523 | 3'b001: begin |
---|
524 | bank_cmp_addr_r[CMP_WIDTH-1:0] |
---|
525 | <= af_addr_r3[CS_RANGE_END:ROW_RANGE_START]; |
---|
526 | // This indicates the bank was activated |
---|
527 | bank_valid_r[0] <= 1'b1; |
---|
528 | end |
---|
529 | 3'b010: begin //(b0->b1) |
---|
530 | bank_cmp_addr_r[(2*CMP_WIDTH)-1:CMP_WIDTH] |
---|
531 | <= bank_cmp_addr_r[CMP_WIDTH-1:0]; |
---|
532 | bank_valid_r[1] <= bank_valid_r[0]; |
---|
533 | end |
---|
534 | 3'b100:begin //(b0->b1, b1->b2) |
---|
535 | bank_cmp_addr_r[(2*CMP_WIDTH)-1:CMP_WIDTH] |
---|
536 | <= bank_cmp_addr_r[CMP_WIDTH-1:0]; |
---|
537 | bank_cmp_addr_r[(3*CMP_WIDTH)-1:2*CMP_WIDTH] |
---|
538 | <= bank_cmp_addr_r[(2*CMP_WIDTH)-1:CMP_WIDTH]; |
---|
539 | bank_valid_r[1] <= bank_valid_r[0]; |
---|
540 | bank_valid_r[2] <= bank_valid_r[1]; |
---|
541 | end |
---|
542 | default: begin //(b0->b1, b1->b2, b2->b3) |
---|
543 | bank_cmp_addr_r[(2*CMP_WIDTH)-1:CMP_WIDTH] |
---|
544 | <= bank_cmp_addr_r[CMP_WIDTH-1:0]; |
---|
545 | bank_cmp_addr_r[(3*CMP_WIDTH)-1:2*CMP_WIDTH] |
---|
546 | <= bank_cmp_addr_r[(2*CMP_WIDTH)-1:CMP_WIDTH]; |
---|
547 | bank_cmp_addr_r[(4*CMP_WIDTH)-1:3*CMP_WIDTH] |
---|
548 | <= bank_cmp_addr_r[(3*CMP_WIDTH)-1:2*CMP_WIDTH]; |
---|
549 | bank_valid_r[1] <= bank_valid_r[0]; |
---|
550 | bank_valid_r[2] <= bank_valid_r[1]; |
---|
551 | bank_valid_r[3] <= bank_valid_r[2]; |
---|
552 | end |
---|
553 | endcase |
---|
554 | end |
---|
555 | end |
---|
556 | end |
---|
557 | end else begin: gen_single_bank_open // single bank option |
---|
558 | always @(posedge clk) begin |
---|
559 | no_precharge_r <= 1'd0; |
---|
560 | no_precharge_r1 <= 1'd0; |
---|
561 | no_precharge_wait_r <= 1'd0; |
---|
562 | if (rst_r1) |
---|
563 | sb_open_add_r <= {CMP_WIDTH{1'b0}}; |
---|
564 | else if (state_r == CTRL_ACTIVE) |
---|
565 | sb_open_add_r <= af_addr_r2[CS_RANGE_END:ROW_RANGE_START]; |
---|
566 | end |
---|
567 | end |
---|
568 | endgenerate |
---|
569 | |
---|
570 | //*************************************************************************** |
---|
571 | // Timing counters |
---|
572 | //*************************************************************************** |
---|
573 | |
---|
574 | //***************************************************************** |
---|
575 | // Write and read enable generation for PHY |
---|
576 | //***************************************************************** |
---|
577 | |
---|
578 | // write burst count. Counts from (BL/2 to 1). |
---|
579 | // Also logic for controller write enable. |
---|
580 | always @(posedge clk) begin |
---|
581 | if (state_r == CTRL_BURST_WRITE) begin |
---|
582 | wrburst_cnt_r <= BURST_LEN_DIV2; |
---|
583 | end else if (wrburst_cnt_r >= 3'd1) |
---|
584 | wrburst_cnt_r <= wrburst_cnt_r - 1; |
---|
585 | end // always @ (posedge clk) |
---|
586 | |
---|
587 | |
---|
588 | always @(posedge clk) begin |
---|
589 | if (rst_r1) begin |
---|
590 | ctrl_wren <= 1'b0; |
---|
591 | end else if (state_r == CTRL_BURST_WRITE) begin |
---|
592 | ctrl_wren <= 1'b1; |
---|
593 | end else if (wrburst_wren_ok_r) |
---|
594 | ctrl_wren <= 1'b0; |
---|
595 | end |
---|
596 | |
---|
597 | |
---|
598 | always @(posedge clk) begin |
---|
599 | if ((state_r == CTRL_BURST_WRITE) |
---|
600 | && (BURST_LEN_DIV2 > 2)) |
---|
601 | wrburst_ok_r <= 1'd0; |
---|
602 | else if ((wrburst_cnt_r <= 3'd3) || |
---|
603 | (BURST_LEN_DIV2 <= 2)) |
---|
604 | wrburst_ok_r <= 1'b1; |
---|
605 | end |
---|
606 | |
---|
607 | // flag to check when wrburst count has reached |
---|
608 | // a value of 1. This flag is used in the ctrl_wren |
---|
609 | // logic |
---|
610 | always @(posedge clk) begin |
---|
611 | if(wrburst_cnt_r == 3'd2) |
---|
612 | wrburst_wren_ok_r <=1'b1; |
---|
613 | else |
---|
614 | wrburst_wren_ok_r <= 1'b0; |
---|
615 | end |
---|
616 | |
---|
617 | |
---|
618 | // read burst count. Counts from (BL/2 to 1) |
---|
619 | always @(posedge clk) begin |
---|
620 | if (state_r == CTRL_BURST_READ) begin |
---|
621 | rdburst_cnt_r <= BURST_LEN_DIV2; |
---|
622 | end else if (rdburst_cnt_r >= 3'd1) |
---|
623 | rdburst_cnt_r <= rdburst_cnt_r - 1; |
---|
624 | end // always @ (posedge clk) |
---|
625 | |
---|
626 | |
---|
627 | always @(posedge clk) begin |
---|
628 | if (rst_r1) begin |
---|
629 | ctrl_rden <= 1'b0; |
---|
630 | end else if (state_r == CTRL_BURST_READ) begin |
---|
631 | ctrl_rden <= 1'b1; |
---|
632 | end else if (rdburst_rden_ok_r) |
---|
633 | ctrl_rden <= 1'b0; |
---|
634 | end |
---|
635 | |
---|
636 | // the rd_burst_ok_r signal will be asserted one cycle later |
---|
637 | // in multi chip select cases if the back to back read is to |
---|
638 | // different chip selects. The cs_changed_sticky_r signal will |
---|
639 | // be asserted only for multi chip select cases. |
---|
640 | always @(posedge clk) begin |
---|
641 | if ((state_r == CTRL_BURST_READ) |
---|
642 | && (BURST_LEN_DIV2 > 2)) |
---|
643 | rdburst_ok_r <= 1'd0; |
---|
644 | else if ((rdburst_cnt_r <=( 3'd3 - cs_change_sticky_r)) || |
---|
645 | (BURST_LEN_DIV2 <= 2)) |
---|
646 | rdburst_ok_r <= 1'b1; |
---|
647 | end |
---|
648 | |
---|
649 | // flag to check when rdburst count has reached |
---|
650 | // a value of 1. This flag is used in the ctrl_rden |
---|
651 | // logic |
---|
652 | always @(posedge clk) begin |
---|
653 | if (rdburst_cnt_r == 3'd2) |
---|
654 | rdburst_rden_ok_r <= 1'b1; |
---|
655 | else |
---|
656 | rdburst_rden_ok_r <= 1'b0; |
---|
657 | end |
---|
658 | |
---|
659 | |
---|
660 | //***************************************************************** |
---|
661 | // Various delay counters |
---|
662 | // The counters are checked for value of <= 3 to determine the |
---|
663 | // if the count values are reached during different commands. |
---|
664 | // It is checked for 3 because |
---|
665 | // 1. The counters are loaded during the state when the command |
---|
666 | // state is reached (+1) |
---|
667 | // 2. After the <= 3 condition is reached the sm takes two cycles |
---|
668 | // to transition to the new command state (+2) |
---|
669 | //***************************************************************** |
---|
670 | |
---|
671 | // tRP count - precharge command period |
---|
672 | always @(posedge clk) begin |
---|
673 | if (state_r == CTRL_PRECHARGE) |
---|
674 | rp_cnt_r <= TRP_COUNT; |
---|
675 | else if (rp_cnt_r != 4'd0) |
---|
676 | rp_cnt_r <= rp_cnt_r - 1; |
---|
677 | end |
---|
678 | |
---|
679 | always @(posedge clk) begin |
---|
680 | if (state_r == CTRL_PRECHARGE) |
---|
681 | rp_cnt_ok_r <= 1'd0; |
---|
682 | else if (rp_cnt_r <= 4'd3) |
---|
683 | rp_cnt_ok_r <= 1'd1; |
---|
684 | end |
---|
685 | |
---|
686 | // tRFC count - refresh-refresh, refresh-active |
---|
687 | always @(posedge clk) begin |
---|
688 | if (state_r == CTRL_AUTO_REFRESH) |
---|
689 | rfc_cnt_r <= TRFC_COUNT; |
---|
690 | else if (rfc_cnt_r != 8'd0) |
---|
691 | rfc_cnt_r <= rfc_cnt_r - 1; |
---|
692 | end |
---|
693 | |
---|
694 | always @(posedge clk) begin |
---|
695 | if (state_r == CTRL_AUTO_REFRESH) |
---|
696 | rfc_ok_r <= 1'b0; |
---|
697 | else if(rfc_cnt_r <= 8'd3) |
---|
698 | rfc_ok_r <= 1'b1; |
---|
699 | end |
---|
700 | |
---|
701 | // tRCD count - active to read/write |
---|
702 | always @(posedge clk) begin |
---|
703 | if (state_r == CTRL_ACTIVE) |
---|
704 | rcd_cnt_r <= TRCD_COUNT; |
---|
705 | else if (rcd_cnt_r != 4'd0) |
---|
706 | rcd_cnt_r <= rcd_cnt_r - 1; |
---|
707 | end |
---|
708 | |
---|
709 | always @(posedge clk) begin |
---|
710 | if ((state_r == CTRL_ACTIVE) |
---|
711 | && (TRCD_COUNT > 2)) |
---|
712 | rcd_cnt_ok_r <= 1'd0; |
---|
713 | else if (rcd_cnt_r <= 4'd3) |
---|
714 | rcd_cnt_ok_r <= 1; |
---|
715 | end |
---|
716 | |
---|
717 | // tRRD count - active to active |
---|
718 | always @(posedge clk) begin |
---|
719 | if (state_r == CTRL_ACTIVE) |
---|
720 | trrd_cnt_r <= TRRD_COUNT; |
---|
721 | else if (trrd_cnt_r != 3'd0) |
---|
722 | trrd_cnt_r <= trrd_cnt_r - 1; |
---|
723 | end |
---|
724 | |
---|
725 | always @(posedge clk) begin |
---|
726 | if (state_r == CTRL_ACTIVE) |
---|
727 | trrd_cnt_ok_r <= 1'd0; |
---|
728 | else if (trrd_cnt_r <= 3'd3) |
---|
729 | trrd_cnt_ok_r <= 1; |
---|
730 | end |
---|
731 | |
---|
732 | // tRAS count - active to precharge |
---|
733 | always @(posedge clk) begin |
---|
734 | if (state_r == CTRL_ACTIVE) |
---|
735 | ras_cnt_r <= TRAS_COUNT; |
---|
736 | else if (ras_cnt_r != 5'd0) |
---|
737 | ras_cnt_r <= ras_cnt_r - 1; |
---|
738 | end |
---|
739 | |
---|
740 | // counter for write to prcharge |
---|
741 | // read to precharge and |
---|
742 | // activate to precharge |
---|
743 | // precharge_ok_cnt_r is added with trtp count, |
---|
744 | // there can be cases where the sm can go from |
---|
745 | // activate to read and the act->pre count time |
---|
746 | // would not have been satisfied. The rd->pre |
---|
747 | // time is very less. wr->pre time is almost the |
---|
748 | // same as act-> pre |
---|
749 | always @(posedge clk) begin |
---|
750 | if (rst_r1) |
---|
751 | precharge_ok_cnt_r <= 5'd0; |
---|
752 | else if (state_r == CTRL_BURST_READ) begin |
---|
753 | // assign only if the cnt is < TRTP_COUNT |
---|
754 | if (precharge_ok_cnt_r < TRTP_COUNT) |
---|
755 | precharge_ok_cnt_r <= TRTP_COUNT; |
---|
756 | end else if (state_r == CTRL_BURST_WRITE) |
---|
757 | precharge_ok_cnt_r <= TWR_COUNT; |
---|
758 | else if (state_r == CTRL_ACTIVE) |
---|
759 | if (precharge_ok_cnt_r <= TRAS_COUNT) |
---|
760 | precharge_ok_cnt_r <= TRAS_COUNT; |
---|
761 | else |
---|
762 | precharge_ok_cnt_r <= precharge_ok_cnt_r - 1; |
---|
763 | else if (precharge_ok_cnt_r != 5'd0) |
---|
764 | precharge_ok_cnt_r <= precharge_ok_cnt_r - 1; |
---|
765 | end |
---|
766 | |
---|
767 | always @(posedge clk) begin |
---|
768 | if ((state_r == CTRL_BURST_READ) || |
---|
769 | (state_r == CTRL_BURST_WRITE)|| |
---|
770 | (state_r == CTRL_ACTIVE)) |
---|
771 | precharge_ok_r <= 1'd0; |
---|
772 | else if(precharge_ok_cnt_r <= 5'd3) |
---|
773 | precharge_ok_r <=1'd1; |
---|
774 | end |
---|
775 | |
---|
776 | // write to read counter |
---|
777 | // write to read includes : write latency + burst time + tWTR |
---|
778 | always @(posedge clk) begin |
---|
779 | if (rst_r1) |
---|
780 | wr_to_rd_cnt_r <= 5'd0; |
---|
781 | else if (state_r == CTRL_BURST_WRITE) |
---|
782 | wr_to_rd_cnt_r <= (TWTR_COUNT); |
---|
783 | else if (wr_to_rd_cnt_r != 5'd0) |
---|
784 | wr_to_rd_cnt_r <= wr_to_rd_cnt_r - 1; |
---|
785 | end |
---|
786 | |
---|
787 | always @(posedge clk) begin |
---|
788 | if (state_r == CTRL_BURST_WRITE) |
---|
789 | wr_to_rd_ok_r <= 1'd0; |
---|
790 | else if (wr_to_rd_cnt_r <= 5'd3) |
---|
791 | wr_to_rd_ok_r <= 1'd1; |
---|
792 | end |
---|
793 | |
---|
794 | // read to write counter |
---|
795 | always @(posedge clk) begin |
---|
796 | if (rst_r1) |
---|
797 | rd_to_wr_cnt_r <= 5'd0; |
---|
798 | else if (state_r == CTRL_BURST_READ) |
---|
799 | rd_to_wr_cnt_r <= (TRTW_COUNT); |
---|
800 | else if (rd_to_wr_cnt_r != 5'd0) |
---|
801 | rd_to_wr_cnt_r <= rd_to_wr_cnt_r - 1; |
---|
802 | end |
---|
803 | |
---|
804 | always @(posedge clk) begin |
---|
805 | if (state_r == CTRL_BURST_READ) |
---|
806 | rd_to_wr_ok_r <= 1'b0; |
---|
807 | else if (rd_to_wr_cnt_r <= 5'd3) |
---|
808 | rd_to_wr_ok_r <= 1'b1; |
---|
809 | end |
---|
810 | |
---|
811 | always @(posedge clk) begin |
---|
812 | if(refi_cnt_r == (TREFI_COUNT -1)) |
---|
813 | refi_cnt_ok_r <= 1'b1; |
---|
814 | else |
---|
815 | refi_cnt_ok_r <= 1'b0; |
---|
816 | end |
---|
817 | |
---|
818 | // auto refresh interval counter in refresh_clk domain |
---|
819 | always @(posedge clk) begin |
---|
820 | if ((rst_r1) || (refi_cnt_ok_r)) begin |
---|
821 | refi_cnt_r <= 12'd0; |
---|
822 | end else begin |
---|
823 | refi_cnt_r <= refi_cnt_r + 1; |
---|
824 | end |
---|
825 | end // always @ (posedge clk) |
---|
826 | |
---|
827 | // auto refresh flag |
---|
828 | always @(posedge clk) begin |
---|
829 | if (refi_cnt_ok_r) begin |
---|
830 | ref_flag_r <= 1'b1; |
---|
831 | end else begin |
---|
832 | ref_flag_r <= 1'b0; |
---|
833 | end |
---|
834 | end // always @ (posedge clk) |
---|
835 | |
---|
836 | assign ctrl_ref_flag = ref_flag_r; |
---|
837 | |
---|
838 | //refresh flag detect |
---|
839 | //auto_ref high indicates auto_refresh requirement |
---|
840 | //auto_ref is held high until auto refresh command is issued. |
---|
841 | always @(posedge clk)begin |
---|
842 | if (rst_r1) |
---|
843 | auto_ref_r <= 1'b0; |
---|
844 | else if (ref_flag_r) |
---|
845 | auto_ref_r <= 1'b1; |
---|
846 | else if (state_r == CTRL_AUTO_REFRESH) |
---|
847 | auto_ref_r <= 1'b0; |
---|
848 | end |
---|
849 | |
---|
850 | |
---|
851 | // keep track of which chip selects got auto-refreshed (avoid auto-refreshing |
---|
852 | // all CS's at once to avoid current spike) |
---|
853 | always @(posedge clk)begin |
---|
854 | if (rst_r1 || (state_r1 == CTRL_PRECHARGE)) |
---|
855 | auto_cnt_r <= 'd0; |
---|
856 | else if (state_r1 == CTRL_AUTO_REFRESH) |
---|
857 | auto_cnt_r <= auto_cnt_r + 1; |
---|
858 | end |
---|
859 | |
---|
860 | // register for timing purposes. Extra delay doesn't really matter |
---|
861 | always @(posedge clk) |
---|
862 | phy_init_done_r <= phy_init_done; |
---|
863 | |
---|
864 | always @(posedge clk)begin |
---|
865 | if (rst_r1) begin |
---|
866 | state_r <= CTRL_IDLE; |
---|
867 | state_r1 <= CTRL_IDLE; |
---|
868 | end else begin |
---|
869 | state_r <= next_state; |
---|
870 | state_r1 <= state_r; |
---|
871 | end |
---|
872 | end |
---|
873 | |
---|
874 | //*************************************************************************** |
---|
875 | // main control state machine |
---|
876 | //*************************************************************************** |
---|
877 | |
---|
878 | always @(*) begin |
---|
879 | next_state = state_r; |
---|
880 | (* full_case, parallel_case *) case (state_r) |
---|
881 | CTRL_IDLE: begin |
---|
882 | // perform auto refresh as soon as we are done with calibration. |
---|
883 | // The calibration logic does not do any refreshes. |
---|
884 | if (phy_init_done_r) |
---|
885 | next_state = CTRL_AUTO_REFRESH; |
---|
886 | end |
---|
887 | |
---|
888 | CTRL_PRECHARGE: begin |
---|
889 | if (auto_ref_r) |
---|
890 | next_state = CTRL_PRECHARGE_WAIT1; |
---|
891 | // when precharging an LRU bank, do not have to go to wait state |
---|
892 | // since we can't possibly be activating row in same bank next |
---|
893 | // disabled for 2t timing. There needs to be a gap between cmds |
---|
894 | // in 2t timing |
---|
895 | else if (no_precharge_wait_r && !TWO_T_TIME_EN) |
---|
896 | next_state = CTRL_ACTIVE; |
---|
897 | else |
---|
898 | next_state = CTRL_PRECHARGE_WAIT; |
---|
899 | end |
---|
900 | |
---|
901 | CTRL_PRECHARGE_WAIT:begin |
---|
902 | if (rp_cnt_ok_r)begin |
---|
903 | if (auto_ref_r) |
---|
904 | // precharge again to make sure we close all the banks |
---|
905 | next_state = CTRL_PRECHARGE; |
---|
906 | else |
---|
907 | next_state = CTRL_ACTIVE; |
---|
908 | end |
---|
909 | end |
---|
910 | |
---|
911 | CTRL_PRECHARGE_WAIT1: |
---|
912 | if (rp_cnt_ok_r) |
---|
913 | next_state = CTRL_AUTO_REFRESH; |
---|
914 | |
---|
915 | CTRL_AUTO_REFRESH: |
---|
916 | next_state = CTRL_AUTO_REFRESH_WAIT; |
---|
917 | |
---|
918 | CTRL_AUTO_REFRESH_WAIT: |
---|
919 | //staggering Auto refresh for multi |
---|
920 | // chip select designs. The SM waits |
---|
921 | // for the rfc time before issuing the |
---|
922 | // next auto refresh. |
---|
923 | if (auto_cnt_r < (CS_NUM))begin |
---|
924 | if (rfc_ok_r ) |
---|
925 | next_state = CTRL_AUTO_REFRESH; |
---|
926 | end else if (rfc_ok_r)begin |
---|
927 | if(auto_ref_r) |
---|
928 | // MIG 2.3: For deep designs if Auto Refresh |
---|
929 | // flag asserted immediately after calibration is completed |
---|
930 | next_state = CTRL_PRECHARGE; |
---|
931 | else if ( wr_flag || rd_flag) |
---|
932 | next_state = CTRL_ACTIVE; |
---|
933 | end |
---|
934 | |
---|
935 | CTRL_ACTIVE: |
---|
936 | next_state = CTRL_ACTIVE_WAIT; |
---|
937 | |
---|
938 | CTRL_ACTIVE_WAIT: begin |
---|
939 | if (rcd_cnt_ok_r) begin |
---|
940 | if ((conflict_detect_r && ~conflict_resolved_r) || |
---|
941 | auto_ref_r) begin |
---|
942 | if (no_precharge_r1 && ~auto_ref_r && trrd_cnt_ok_r) |
---|
943 | next_state = CTRL_ACTIVE; |
---|
944 | else if(precharge_ok_r) |
---|
945 | next_state = CTRL_PRECHARGE; |
---|
946 | end else if ((wr_flag_r) && (rd_to_wr_ok_r)) |
---|
947 | next_state = CTRL_BURST_WRITE; |
---|
948 | else if ((rd_flag_r)&& (wr_to_rd_ok_r)) |
---|
949 | next_state = CTRL_BURST_READ; |
---|
950 | end |
---|
951 | end |
---|
952 | |
---|
953 | // beginning of write burst |
---|
954 | CTRL_BURST_WRITE: begin |
---|
955 | if (BURST_LEN_DIV2 == 1) begin |
---|
956 | // special case if BL = 2 (i.e. burst lasts only one clk cycle) |
---|
957 | if (wr_flag) |
---|
958 | // if we have another non-conflict write command right after the |
---|
959 | // current write, then stay in this state |
---|
960 | next_state = CTRL_BURST_WRITE; |
---|
961 | else |
---|
962 | // otherwise, if we're done with this burst, and have no write |
---|
963 | // immediately scheduled after this one, wait until write-read |
---|
964 | // delay has passed |
---|
965 | next_state = CTRL_WRITE_WAIT; |
---|
966 | end else |
---|
967 | // otherwise BL > 2, and we have at least one more write cycle for |
---|
968 | // current burst |
---|
969 | next_state = CTRL_WRITE_WAIT; |
---|
970 | // continuation of write burst (also covers waiting after write burst |
---|
971 | // has completed for write-read delay to pass) |
---|
972 | end |
---|
973 | |
---|
974 | CTRL_WRITE_WAIT: begin |
---|
975 | if ((conflict_detect) || auto_ref_r) begin |
---|
976 | if (no_precharge_r && ~auto_ref_r && wrburst_ok_r) |
---|
977 | next_state = CTRL_ACTIVE; |
---|
978 | else if (precharge_ok_r) |
---|
979 | next_state = CTRL_PRECHARGE; |
---|
980 | end else if (wrburst_ok_r && wr_flag) |
---|
981 | next_state = CTRL_BURST_WRITE; |
---|
982 | else if ((rd_flag) && (wr_to_rd_ok_r)) |
---|
983 | next_state = CTRL_BURST_READ; |
---|
984 | end |
---|
985 | |
---|
986 | CTRL_BURST_READ: begin |
---|
987 | if (BURST_LEN_DIV2 == 1) begin |
---|
988 | // special case if BL = 2 (i.e. burst lasts only one clk cycle) |
---|
989 | if (rd_flag) |
---|
990 | next_state = CTRL_BURST_READ; |
---|
991 | else |
---|
992 | next_state = CTRL_READ_WAIT; |
---|
993 | end else |
---|
994 | next_state = CTRL_READ_WAIT; |
---|
995 | end |
---|
996 | |
---|
997 | CTRL_READ_WAIT: begin |
---|
998 | if ((conflict_detect) || auto_ref_r)begin |
---|
999 | if (no_precharge_r && ~auto_ref_r && rdburst_ok_r) |
---|
1000 | next_state = CTRL_ACTIVE; |
---|
1001 | else if (precharge_ok_r) |
---|
1002 | next_state = CTRL_PRECHARGE; |
---|
1003 | // for burst of 4 in multi chip select |
---|
1004 | // if there is a change in cs wait one cycle before the |
---|
1005 | // next read command. cs_change_r will be asserted. |
---|
1006 | end else if (rdburst_ok_r && rd_flag && ~cs_change_r) |
---|
1007 | next_state = CTRL_BURST_READ; |
---|
1008 | else if (wr_flag && (rd_to_wr_ok_r)) |
---|
1009 | next_state = CTRL_BURST_WRITE; |
---|
1010 | end |
---|
1011 | endcase |
---|
1012 | end |
---|
1013 | |
---|
1014 | //*************************************************************************** |
---|
1015 | // control signals to memory |
---|
1016 | //*************************************************************************** |
---|
1017 | |
---|
1018 | always @(posedge clk) begin |
---|
1019 | if ((state_r == CTRL_AUTO_REFRESH) || |
---|
1020 | (state_r == CTRL_ACTIVE) || |
---|
1021 | (state_r == CTRL_PRECHARGE)) begin |
---|
1022 | ddr_ras_n_r <= 1'b0; |
---|
1023 | two_t_enable_r[0] <= 1'b0; |
---|
1024 | end else begin |
---|
1025 | if (TWO_T_TIME_EN) |
---|
1026 | ddr_ras_n_r <= two_t_enable_r[0] ; |
---|
1027 | else |
---|
1028 | ddr_ras_n_r <= 1'd1; |
---|
1029 | two_t_enable_r[0] <= 1'b1; |
---|
1030 | end |
---|
1031 | end |
---|
1032 | |
---|
1033 | always @(posedge clk)begin |
---|
1034 | if ((state_r == CTRL_BURST_WRITE) || |
---|
1035 | (state_r == CTRL_BURST_READ) || |
---|
1036 | (state_r == CTRL_AUTO_REFRESH)) begin |
---|
1037 | ddr_cas_n_r <= 1'b0; |
---|
1038 | two_t_enable_r[1] <= 1'b0; |
---|
1039 | end else begin |
---|
1040 | if (TWO_T_TIME_EN) |
---|
1041 | ddr_cas_n_r <= two_t_enable_r[1]; |
---|
1042 | else |
---|
1043 | ddr_cas_n_r <= 1'b1; |
---|
1044 | two_t_enable_r[1] <= 1'b1; |
---|
1045 | end |
---|
1046 | end |
---|
1047 | |
---|
1048 | always @(posedge clk) begin |
---|
1049 | if ((state_r == CTRL_BURST_WRITE) || |
---|
1050 | (state_r == CTRL_PRECHARGE)) begin |
---|
1051 | ddr_we_n_r <= 1'b0; |
---|
1052 | two_t_enable_r[2] <= 1'b0; |
---|
1053 | end else begin |
---|
1054 | if(TWO_T_TIME_EN) |
---|
1055 | ddr_we_n_r <= two_t_enable_r[2]; |
---|
1056 | else |
---|
1057 | ddr_we_n_r <= 1'b1; |
---|
1058 | two_t_enable_r[2] <= 1'b1; |
---|
1059 | end |
---|
1060 | end |
---|
1061 | |
---|
1062 | // turn off auto-precharge when issuing commands (A10 = 0) |
---|
1063 | // mapping the col add for linear addressing. |
---|
1064 | generate |
---|
1065 | if (TWO_T_TIME_EN) begin: gen_addr_col_two_t |
---|
1066 | if (COL_WIDTH == ROW_WIDTH-1) begin: gen_ddr_addr_col_0 |
---|
1067 | assign ddr_addr_col = {af_addr_r3[COL_WIDTH-1:10], 1'b0, |
---|
1068 | af_addr_r3[9:0]}; |
---|
1069 | end else begin |
---|
1070 | if (COL_WIDTH > 10) begin: gen_ddr_addr_col_1 |
---|
1071 | assign ddr_addr_col = {{(ROW_WIDTH-COL_WIDTH-1){1'b0}}, |
---|
1072 | af_addr_r3[COL_WIDTH-1:10], 1'b0, |
---|
1073 | af_addr_r3[9:0]}; |
---|
1074 | end else begin: gen_ddr_addr_col_2 |
---|
1075 | assign ddr_addr_col = {{(ROW_WIDTH-COL_WIDTH-1){1'b0}}, 1'b0, |
---|
1076 | af_addr_r3[COL_WIDTH-1:0]}; |
---|
1077 | end |
---|
1078 | end |
---|
1079 | end else begin: gen_addr_col_one_t |
---|
1080 | if (COL_WIDTH == ROW_WIDTH-1) begin: gen_ddr_addr_col_0_1 |
---|
1081 | assign ddr_addr_col = {af_addr_r2[COL_WIDTH-1:10], 1'b0, |
---|
1082 | af_addr_r2[9:0]}; |
---|
1083 | end else begin |
---|
1084 | if (COL_WIDTH > 10) begin: gen_ddr_addr_col_1_1 |
---|
1085 | assign ddr_addr_col = {{(ROW_WIDTH-COL_WIDTH-1){1'b0}}, |
---|
1086 | af_addr_r2[COL_WIDTH-1:10], 1'b0, |
---|
1087 | af_addr_r2[9:0]}; |
---|
1088 | end else begin: gen_ddr_addr_col_2_1 |
---|
1089 | assign ddr_addr_col = {{(ROW_WIDTH-COL_WIDTH-1){1'b0}}, 1'b0, |
---|
1090 | af_addr_r2[COL_WIDTH-1:0]}; |
---|
1091 | end |
---|
1092 | end |
---|
1093 | end |
---|
1094 | endgenerate |
---|
1095 | |
---|
1096 | // Assign address during row activate |
---|
1097 | generate |
---|
1098 | if (TWO_T_TIME_EN) |
---|
1099 | assign ddr_addr_row = af_addr_r3[ROW_RANGE_END:ROW_RANGE_START]; |
---|
1100 | else |
---|
1101 | assign ddr_addr_row = af_addr_r2[ROW_RANGE_END:ROW_RANGE_START]; |
---|
1102 | endgenerate |
---|
1103 | |
---|
1104 | |
---|
1105 | always @(posedge clk)begin |
---|
1106 | if ((state_r == CTRL_ACTIVE) || |
---|
1107 | ((state_r1 == CTRL_ACTIVE) && TWO_T_TIME_EN)) |
---|
1108 | ddr_addr_r <= ddr_addr_row; |
---|
1109 | else if ((state_r == CTRL_BURST_WRITE) || |
---|
1110 | (state_r == CTRL_BURST_READ) || |
---|
1111 | (((state_r1 == CTRL_BURST_WRITE) || |
---|
1112 | (state_r1 == CTRL_BURST_READ)) && |
---|
1113 | TWO_T_TIME_EN)) |
---|
1114 | ddr_addr_r <= ddr_addr_col; |
---|
1115 | else if (((state_r == CTRL_PRECHARGE) || |
---|
1116 | ((state_r1 == CTRL_PRECHARGE) && TWO_T_TIME_EN)) |
---|
1117 | && auto_ref_r) begin |
---|
1118 | // if we're precharging as a result of AUTO-REFRESH, precharge all banks |
---|
1119 | ddr_addr_r <= {ROW_WIDTH{1'b0}}; |
---|
1120 | ddr_addr_r[10] <= 1'b1; |
---|
1121 | end else if ((state_r == CTRL_PRECHARGE) || |
---|
1122 | ((state_r1 == CTRL_PRECHARGE) && TWO_T_TIME_EN)) |
---|
1123 | // if we're precharging to close a specific bank/row, set A10=0 |
---|
1124 | ddr_addr_r <= {ROW_WIDTH{1'b0}}; |
---|
1125 | else |
---|
1126 | ddr_addr_r <= {ROW_WIDTH{1'bx}}; |
---|
1127 | end |
---|
1128 | |
---|
1129 | always @(posedge clk)begin |
---|
1130 | // whenever we're precharging, we're either: (1) precharging all banks (in |
---|
1131 | // which case banks bits are don't care, (2) precharging the LRU bank, |
---|
1132 | // b/c we've exceeded the limit of # of banks open (need to close the LRU |
---|
1133 | // bank to make room for a new one), (3) we haven't exceed the maximum # |
---|
1134 | // of banks open, but we trying to open a different row in a bank that's |
---|
1135 | // already open |
---|
1136 | if (((state_r == CTRL_PRECHARGE) || |
---|
1137 | ((state_r1 == CTRL_PRECHARGE) && TWO_T_TIME_EN)) && |
---|
1138 | bank_conflict_r && MULTI_BANK_EN) |
---|
1139 | // When LRU bank needs to be closed |
---|
1140 | ddr_ba_r <= bank_cmp_addr_r[(3*CMP_WIDTH)+CMP_BANK_RANGE_END: |
---|
1141 | (3*CMP_WIDTH)+CMP_BANK_RANGE_START]; |
---|
1142 | else begin |
---|
1143 | // Either precharge due to refresh or bank hit case |
---|
1144 | if (TWO_T_TIME_EN) |
---|
1145 | ddr_ba_r <= af_addr_r3[BANK_RANGE_END:BANK_RANGE_START]; |
---|
1146 | else |
---|
1147 | ddr_ba_r <= af_addr_r2[BANK_RANGE_END:BANK_RANGE_START]; |
---|
1148 | end |
---|
1149 | end |
---|
1150 | |
---|
1151 | // chip enable generation logic |
---|
1152 | generate |
---|
1153 | // if only one chip select, always assert it after reset |
---|
1154 | if (CS_BITS == 0) begin: gen_ddr_cs_0 |
---|
1155 | always @(posedge clk) |
---|
1156 | if (rst_r1) |
---|
1157 | ddr_cs_n_r[0] <= 1'b1; |
---|
1158 | else |
---|
1159 | ddr_cs_n_r[0] <= 1'b0; |
---|
1160 | // otherwise if we have multiple chip selects |
---|
1161 | end else begin: gen_ddr_cs_1 |
---|
1162 | if(TWO_T_TIME_EN) begin: gen_2t_cs |
---|
1163 | always @(posedge clk) |
---|
1164 | if (rst_r1) |
---|
1165 | ddr_cs_n_r <= {CS_NUM{1'b1}}; |
---|
1166 | else if ((state_r1 == CTRL_AUTO_REFRESH)) begin |
---|
1167 | // if auto-refreshing, only auto-refresh one CS at any time (avoid |
---|
1168 | // beating on the ground plane by refreshing all CS's at same time) |
---|
1169 | ddr_cs_n_r <= {CS_NUM{1'b1}}; |
---|
1170 | ddr_cs_n_r[auto_cnt_r] <= 1'b0; |
---|
1171 | end else if (auto_ref_r && (state_r1 == CTRL_PRECHARGE)) begin |
---|
1172 | ddr_cs_n_r <= {CS_NUM{1'b0}}; |
---|
1173 | end else if ((state_r1 == CTRL_PRECHARGE) && ( bank_conflict_r |
---|
1174 | && MULTI_BANK_EN))begin |
---|
1175 | // precharging the LRU bank |
---|
1176 | ddr_cs_n_r <= {CS_NUM{1'b1}}; |
---|
1177 | ddr_cs_n_r[bank_cmp_addr_r[(3*CMP_WIDTH)+CMP_CS_RANGE_END: |
---|
1178 | (3*CMP_WIDTH)+CMP_CS_RANGE_START]] <= 1'b0; |
---|
1179 | end else begin |
---|
1180 | // otherwise, check the upper address bits to see which CS to assert |
---|
1181 | ddr_cs_n_r <= {CS_NUM{1'b1}}; |
---|
1182 | ddr_cs_n_r[af_addr_r3[CS_RANGE_END:CS_RANGE_START]] <= 1'b0; |
---|
1183 | end // else: !if(((state_r == CTRL_PRECHARGE) ||... |
---|
1184 | end else begin: gen_1t_cs // block: gen_2t_cs |
---|
1185 | always @(posedge clk) |
---|
1186 | if (rst_r1) |
---|
1187 | ddr_cs_n_r <= {CS_NUM{1'b1}}; |
---|
1188 | else if ((state_r == CTRL_AUTO_REFRESH) ) begin |
---|
1189 | // if auto-refreshing, only auto-refresh one CS at any time (avoid |
---|
1190 | // beating on the ground plane by refreshing all CS's at same time) |
---|
1191 | ddr_cs_n_r <= {CS_NUM{1'b1}}; |
---|
1192 | ddr_cs_n_r[auto_cnt_r] <= 1'b0; |
---|
1193 | end else if (auto_ref_r && (state_r == CTRL_PRECHARGE) ) begin |
---|
1194 | ddr_cs_n_r <= {CS_NUM{1'b0}}; |
---|
1195 | end else if ((state_r == CTRL_PRECHARGE) && |
---|
1196 | (bank_conflict_r && MULTI_BANK_EN))begin |
---|
1197 | // precharging the LRU bank |
---|
1198 | ddr_cs_n_r <= {CS_NUM{1'b1}}; |
---|
1199 | ddr_cs_n_r[bank_cmp_addr_r[(3*CMP_WIDTH)+CMP_CS_RANGE_END: |
---|
1200 | (3*CMP_WIDTH)+CMP_CS_RANGE_START]] <= 1'b0; |
---|
1201 | end else begin |
---|
1202 | // otherwise, check the upper address bits to see which CS to assert |
---|
1203 | ddr_cs_n_r <= {CS_NUM{1'b1}}; |
---|
1204 | ddr_cs_n_r[af_addr_r2[CS_RANGE_END:CS_RANGE_START]] <= 1'b0; |
---|
1205 | end // else: !if(((state_r == CTRL_PRECHARGE) ||... |
---|
1206 | end // block: gen_1t_cs |
---|
1207 | end |
---|
1208 | endgenerate |
---|
1209 | |
---|
1210 | // registring the two_t timing enable signal. |
---|
1211 | // This signal will be asserted (low) when the |
---|
1212 | // chip select has to be asserted. |
---|
1213 | always @(posedge clk)begin |
---|
1214 | if(&two_t_enable_r) |
---|
1215 | two_t_enable_r1 <= {CS_NUM{1'b1}}; |
---|
1216 | else |
---|
1217 | two_t_enable_r1 <= {CS_NUM{1'b0}}; |
---|
1218 | end |
---|
1219 | |
---|
1220 | assign ctrl_addr = ddr_addr_r; |
---|
1221 | assign ctrl_ba = ddr_ba_r; |
---|
1222 | assign ctrl_ras_n = ddr_ras_n_r; |
---|
1223 | assign ctrl_cas_n = ddr_cas_n_r; |
---|
1224 | assign ctrl_we_n = ddr_we_n_r; |
---|
1225 | assign ctrl_cs_n = (TWO_T_TIME_EN) ? |
---|
1226 | (ddr_cs_n_r | two_t_enable_r1) : |
---|
1227 | ddr_cs_n_r; |
---|
1228 | |
---|
1229 | endmodule |
---|
1230 | |
---|