1 | //***************************************************************************** |
---|
2 | // (c) Copyright 2006-2009 Xilinx, Inc. All rights reserved. |
---|
3 | // |
---|
4 | // This file contains confidential and proprietary information |
---|
5 | // of Xilinx, Inc. and is protected under U.S. and |
---|
6 | // international copyright and other intellectual property |
---|
7 | // laws. |
---|
8 | // |
---|
9 | // DISCLAIMER |
---|
10 | // This disclaimer is not a license and does not grant any |
---|
11 | // rights to the materials distributed herewith. Except as |
---|
12 | // otherwise provided in a valid license issued to you by |
---|
13 | // Xilinx, and to the maximum extent permitted by applicable |
---|
14 | // law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND |
---|
15 | // WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES |
---|
16 | // AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING |
---|
17 | // BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- |
---|
18 | // INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and |
---|
19 | // (2) Xilinx shall not be liable (whether in contract or tort, |
---|
20 | // including negligence, or under any other theory of |
---|
21 | // liability) for any loss or damage of any kind or nature |
---|
22 | // related to, arising under or in connection with these |
---|
23 | // materials, including for any direct, or any indirect, |
---|
24 | // special, incidental, or consequential loss or damage |
---|
25 | // (including loss of data, profits, goodwill, or any type of |
---|
26 | // loss or damage suffered as a result of any action brought |
---|
27 | // by a third party) even if such damage or loss was |
---|
28 | // reasonably foreseeable or Xilinx had been advised of the |
---|
29 | // possibility of the same. |
---|
30 | // |
---|
31 | // CRITICAL APPLICATIONS |
---|
32 | // Xilinx products are not designed or intended to be fail- |
---|
33 | // safe, or for use in any application requiring fail-safe |
---|
34 | // performance, such as life-support or safety devices or |
---|
35 | // systems, Class III medical devices, nuclear facilities, |
---|
36 | // applications related to the deployment of airbags, or any |
---|
37 | // other applications that could lead to death, personal |
---|
38 | // injury, or severe property or environmental damage |
---|
39 | // (individually and collectively, "Critical |
---|
40 | // Applications"). Customer assumes the sole risk and |
---|
41 | // liability of any use of Xilinx products in Critical |
---|
42 | // Applications, subject only to applicable laws and |
---|
43 | // regulations governing limitations on product liability. |
---|
44 | // |
---|
45 | // THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS |
---|
46 | // PART OF THIS FILE AT ALL TIMES. |
---|
47 | //***************************************************************************** |
---|
48 | // ____ ____ |
---|
49 | // / /\/ / |
---|
50 | // /___/ \ / Vendor: Xilinx |
---|
51 | // \ \ \/ Version: 3.6 |
---|
52 | // \ \ Application: MIG |
---|
53 | // / / Filename: ddr2_phy_calib.v |
---|
54 | // /___/ /\ Date Last Modified: $Date: 2010/06/29 12:03:43 $ |
---|
55 | // \ \ / \ Date Created: Thu Aug 10 2006 |
---|
56 | // \___\/\___\ |
---|
57 | // |
---|
58 | //Device: Virtex-5 |
---|
59 | //Design Name: DDR2 |
---|
60 | //Purpose: |
---|
61 | // This module handles calibration after memory initialization. |
---|
62 | //Reference: |
---|
63 | //Revision History: |
---|
64 | // Rev 1.1 - Default statement is added for the CASE statement of |
---|
65 | // rdd_mux_sel logic. PK. 03/23/09 |
---|
66 | // Rev 1.2 - Change training pattern detected for stage 3 calibration. |
---|
67 | // Use 2-bits per DQS group for stage 3 pattern detection. |
---|
68 | // RC. 09/21/09 |
---|
69 | //***************************************************************************** |
---|
70 | |
---|
71 | `timescale 1ns/1ps |
---|
72 | |
---|
73 | module ddr2_phy_calib # |
---|
74 | ( |
---|
75 | // Following parameters are for 72-bit RDIMM design (for ML561 Reference |
---|
76 | // board design). Actual values may be different. Actual parameters values |
---|
77 | // are passed from design top module dram module. Please refer to |
---|
78 | // the dram module for actual values. |
---|
79 | parameter DQ_WIDTH = 72, |
---|
80 | parameter DQ_BITS = 7, |
---|
81 | parameter DQ_PER_DQS = 8, |
---|
82 | parameter DQS_BITS = 4, |
---|
83 | parameter DQS_WIDTH = 9, |
---|
84 | parameter ADDITIVE_LAT = 0, |
---|
85 | parameter CAS_LAT = 5, |
---|
86 | parameter REG_ENABLE = 1, |
---|
87 | parameter CLK_PERIOD = 3000, |
---|
88 | parameter SIM_ONLY = 0, |
---|
89 | parameter DEBUG_EN = 0 |
---|
90 | ) |
---|
91 | ( |
---|
92 | input clk, |
---|
93 | input clkdiv, |
---|
94 | input rstdiv, |
---|
95 | input [3:0] calib_start, |
---|
96 | input ctrl_rden, |
---|
97 | input phy_init_rden, |
---|
98 | input [DQ_WIDTH-1:0] rd_data_rise, |
---|
99 | input [DQ_WIDTH-1:0] rd_data_fall, |
---|
100 | input calib_ref_done, |
---|
101 | output reg [3:0] calib_done, |
---|
102 | output reg calib_ref_req, |
---|
103 | output [DQS_WIDTH-1:0] calib_rden, |
---|
104 | output reg [DQS_WIDTH-1:0] calib_rden_sel, |
---|
105 | output reg dlyrst_dq, |
---|
106 | output reg [DQ_WIDTH-1:0] dlyce_dq, |
---|
107 | output reg [DQ_WIDTH-1:0] dlyinc_dq, |
---|
108 | output reg dlyrst_dqs, |
---|
109 | output reg [DQS_WIDTH-1:0] dlyce_dqs, |
---|
110 | output reg [DQS_WIDTH-1:0] dlyinc_dqs, |
---|
111 | output reg [DQS_WIDTH-1:0] dlyrst_gate, |
---|
112 | output reg [DQS_WIDTH-1:0] dlyce_gate, |
---|
113 | output reg [DQS_WIDTH-1:0] dlyinc_gate, |
---|
114 | //(* XIL_PAR_NO_REG_ORDER = "TRUE", XIL_PAR_PATH="Q->u_iodelay_dq_ce.DATAIN", syn_keep = "1", keep = "TRUE"*) |
---|
115 | output [DQS_WIDTH-1:0] en_dqs, |
---|
116 | output [DQS_WIDTH-1:0] rd_data_sel, |
---|
117 | // Debug signals (optional use) |
---|
118 | input dbg_idel_up_all, |
---|
119 | input dbg_idel_down_all, |
---|
120 | input dbg_idel_up_dq, |
---|
121 | input dbg_idel_down_dq, |
---|
122 | input dbg_idel_up_dqs, |
---|
123 | input dbg_idel_down_dqs, |
---|
124 | input dbg_idel_up_gate, |
---|
125 | input dbg_idel_down_gate, |
---|
126 | input [DQ_BITS-1:0] dbg_sel_idel_dq, |
---|
127 | input dbg_sel_all_idel_dq, |
---|
128 | input [DQS_BITS:0] dbg_sel_idel_dqs, |
---|
129 | input dbg_sel_all_idel_dqs, |
---|
130 | input [DQS_BITS:0] dbg_sel_idel_gate, |
---|
131 | input dbg_sel_all_idel_gate, |
---|
132 | output [3:0] dbg_calib_done, |
---|
133 | output [3:0] dbg_calib_err, |
---|
134 | output [(6*DQ_WIDTH)-1:0] dbg_calib_dq_tap_cnt, |
---|
135 | output [(6*DQS_WIDTH)-1:0] dbg_calib_dqs_tap_cnt, |
---|
136 | output [(6*DQS_WIDTH)-1:0] dbg_calib_gate_tap_cnt, |
---|
137 | output [DQS_WIDTH-1:0] dbg_calib_rd_data_sel, |
---|
138 | output [(5*DQS_WIDTH)-1:0] dbg_calib_rden_dly, |
---|
139 | output [(5*DQS_WIDTH)-1:0] dbg_calib_gate_dly |
---|
140 | ); |
---|
141 | |
---|
142 | // minimum time (in IDELAY taps) for which capture data must be stable for |
---|
143 | // algorithm to consider |
---|
144 | localparam MIN_WIN_SIZE = 5; |
---|
145 | // IDEL_SET_VAL = (# of cycles - 1) to wait after changing IDELAY value |
---|
146 | // we only have to wait enough for input with new IDELAY value to |
---|
147 | // propagate through pipeline stages. |
---|
148 | localparam IDEL_SET_VAL = 3'b111; |
---|
149 | // # of clock cycles to delay read enable to determine if read data pattern |
---|
150 | // is correct for stage 3/4 (RDEN, DQS gate) calibration |
---|
151 | localparam CALIB_RDEN_PIPE_LEN = 31; |
---|
152 | // translate CAS latency into number of clock cycles for read valid delay |
---|
153 | // determination. Really only needed for CL = 2.5 (set to 2) |
---|
154 | localparam CAS_LAT_RDEN = (CAS_LAT == 25) ? 2 : CAS_LAT; |
---|
155 | // an SRL32 is used to delay CTRL_RDEN to generate read valid signal. This |
---|
156 | // is min possible value delay through SRL32 can be |
---|
157 | localparam RDEN_BASE_DELAY = CAS_LAT_RDEN + ADDITIVE_LAT + REG_ENABLE; |
---|
158 | // an SRL32 is used to delay the CTRL_RDEN from the read postamble DQS |
---|
159 | // gate. This is min possible value the SRL32 delay can be: |
---|
160 | // - Delay from end of deassertion of CTRL_RDEN to last falling edge of |
---|
161 | // read burst = 3.5 (CTRL_RDEN -> CAS delay) + 3 (min CAS latency) = 6.5 |
---|
162 | // - Minimum time for DQS gate circuit to be generated: |
---|
163 | // * 1 cyc to register CTRL_RDEN from controller |
---|
164 | // * 1 cyc after RDEN_CTRL falling edge |
---|
165 | // * 1 cyc min through SRL32 |
---|
166 | // * 1 cyc through SRL32 output flop |
---|
167 | // * 0 (<1) cyc of synchronization to DQS domain via IDELAY |
---|
168 | // * 1 cyc of delay through IDDR to generate CE to DQ IDDR's |
---|
169 | // Total = 5 cyc < 6.5 cycles |
---|
170 | // The total should be less than 5.5 cycles to account prop delays |
---|
171 | // adding one cycle to the synchronization time via the IDELAY. |
---|
172 | // NOTE: Value differs because of optional pipeline register added |
---|
173 | // for case of RDEN_BASE_DELAY > 3 to improve timing |
---|
174 | localparam GATE_BASE_DELAY = RDEN_BASE_DELAY - 3; |
---|
175 | localparam GATE_BASE_INIT = (GATE_BASE_DELAY <= 1) ? 0 : GATE_BASE_DELAY; |
---|
176 | // used for RDEN calibration: difference between shift value used during |
---|
177 | // calibration, and shift value for actual RDEN SRL. Only applies when |
---|
178 | // RDEN edge is immediately captured by CLKDIV0. If not (depends on phase |
---|
179 | // of CLK0 and CLKDIV0 when RDEN is asserted), then add 1 to this value. |
---|
180 | localparam CAL3_RDEN_SRL_DLY_DELTA = 6; |
---|
181 | // fix minimum value of DQS to be 1 to handle the case where's there's only |
---|
182 | // one DQS group. We could also enforce that user always inputs minimum |
---|
183 | // value of 1 for DQS_BITS (even when DQS_WIDTH=1). Leave this as safeguard |
---|
184 | // Assume we don't have to do this for DQ, DQ_WIDTH always > 1 |
---|
185 | localparam DQS_BITS_FIX = (DQS_BITS == 0) ? 1 : DQS_BITS; |
---|
186 | // how many taps to "pre-delay" DQ before stg 1 calibration - not needed for |
---|
187 | // current calibration, but leave for debug |
---|
188 | localparam DQ_IDEL_INIT = 6'b000000; |
---|
189 | // # IDELAY taps per bit time (i.e. half cycle). Limit to 63. |
---|
190 | localparam integer BIT_TIME_TAPS = (CLK_PERIOD/150 < 64) ? |
---|
191 | CLK_PERIOD/150 : 63; |
---|
192 | |
---|
193 | // used in various places during stage 4 cal: (1) determines maximum taps |
---|
194 | // to increment when finding right edge, (2) amount to decrement after |
---|
195 | // finding left edge, (3) amount to increment after finding right edge |
---|
196 | localparam CAL4_IDEL_BIT_VAL = (BIT_TIME_TAPS >= 6'b100000) ? |
---|
197 | 6'b100000 : BIT_TIME_TAPS; |
---|
198 | |
---|
199 | localparam CAL1_IDLE = 4'h0; |
---|
200 | localparam CAL1_INIT = 4'h1; |
---|
201 | localparam CAL1_INC_IDEL = 4'h2; |
---|
202 | localparam CAL1_FIND_FIRST_EDGE = 4'h3; |
---|
203 | localparam CAL1_FIRST_EDGE_IDEL_WAIT = 4'h4; |
---|
204 | localparam CAL1_FOUND_FIRST_EDGE_WAIT = 4'h5; |
---|
205 | localparam CAL1_FIND_SECOND_EDGE = 4'h6; |
---|
206 | localparam CAL1_SECOND_EDGE_IDEL_WAIT = 4'h7; |
---|
207 | localparam CAL1_CALC_IDEL = 4'h8; |
---|
208 | localparam CAL1_DEC_IDEL = 4'h9; |
---|
209 | localparam CAL1_DONE = 4'hA; |
---|
210 | |
---|
211 | localparam CAL2_IDLE = 4'h0; |
---|
212 | localparam CAL2_INIT = 4'h1; |
---|
213 | localparam CAL2_INIT_IDEL_WAIT = 4'h2; |
---|
214 | localparam CAL2_FIND_EDGE_POS = 4'h3; |
---|
215 | localparam CAL2_FIND_EDGE_IDEL_WAIT_POS = 4'h4; |
---|
216 | localparam CAL2_FIND_EDGE_NEG = 4'h5; |
---|
217 | localparam CAL2_FIND_EDGE_IDEL_WAIT_NEG = 4'h6; |
---|
218 | localparam CAL2_DEC_IDEL = 4'h7; |
---|
219 | localparam CAL2_DONE = 4'h8; |
---|
220 | |
---|
221 | localparam CAL3_IDLE = 3'h0; |
---|
222 | localparam CAL3_INIT = 3'h1; |
---|
223 | localparam CAL3_DETECT = 3'h2; |
---|
224 | localparam CAL3_RDEN_PIPE_CLR_WAIT = 3'h3; |
---|
225 | localparam CAL3_DONE = 3'h4; |
---|
226 | |
---|
227 | localparam CAL4_IDLE = 3'h0; |
---|
228 | localparam CAL4_INIT = 3'h1; |
---|
229 | localparam CAL4_FIND_WINDOW = 3'h2; |
---|
230 | localparam CAL4_FIND_EDGE = 3'h3; |
---|
231 | localparam CAL4_IDEL_WAIT = 3'h4; |
---|
232 | localparam CAL4_RDEN_PIPE_CLR_WAIT = 3'h5; |
---|
233 | localparam CAL4_ADJ_IDEL = 3'h6; |
---|
234 | localparam CAL4_DONE = 3'h7; |
---|
235 | |
---|
236 | integer i, j; |
---|
237 | |
---|
238 | reg [5:0] cal1_bit_time_tap_cnt; |
---|
239 | reg [1:0] cal1_data_chk_last; |
---|
240 | reg cal1_data_chk_last_valid; |
---|
241 | reg [1:0] cal1_data_chk_r; |
---|
242 | reg cal1_dlyce_dq; |
---|
243 | reg cal1_dlyinc_dq; |
---|
244 | reg cal1_dqs_dq_init_phase; |
---|
245 | reg cal1_detect_edge; |
---|
246 | reg cal1_detect_stable; |
---|
247 | reg cal1_found_second_edge; |
---|
248 | reg cal1_found_rising; |
---|
249 | reg cal1_found_window; |
---|
250 | reg cal1_first_edge_done; |
---|
251 | reg [5:0] cal1_first_edge_tap_cnt; |
---|
252 | reg [6:0] cal1_idel_dec_cnt; |
---|
253 | reg [5:0] cal1_idel_inc_cnt; |
---|
254 | reg [5:0] cal1_idel_max_tap; |
---|
255 | reg cal1_idel_max_tap_we; |
---|
256 | reg [5:0] cal1_idel_tap_cnt; |
---|
257 | reg cal1_idel_tap_limit_hit; |
---|
258 | reg [6:0] cal1_low_freq_idel_dec; |
---|
259 | reg cal1_ref_req; |
---|
260 | wire cal1_refresh; |
---|
261 | reg [3:0] cal1_state; |
---|
262 | reg [3:0] cal1_window_cnt; |
---|
263 | reg cal2_curr_sel; |
---|
264 | wire cal2_detect_edge; |
---|
265 | reg cal2_dlyce_dqs; |
---|
266 | reg cal2_dlyinc_dqs; |
---|
267 | reg [5:0] cal2_idel_dec_cnt; |
---|
268 | reg [5:0] cal2_idel_tap_cnt; |
---|
269 | reg [5:0] cal2_idel_tap_limit; |
---|
270 | reg cal2_idel_tap_limit_hit; |
---|
271 | reg cal2_rd_data_fall_last_neg; |
---|
272 | reg cal2_rd_data_fall_last_pos; |
---|
273 | reg cal2_rd_data_last_valid_neg; |
---|
274 | reg cal2_rd_data_last_valid_pos; |
---|
275 | reg cal2_rd_data_rise_last_neg; |
---|
276 | reg cal2_rd_data_rise_last_pos; |
---|
277 | reg [DQS_WIDTH-1:0] cal2_rd_data_sel; |
---|
278 | wire cal2_rd_data_sel_edge; |
---|
279 | reg [DQS_WIDTH-1:0] cal2_rd_data_sel_r; |
---|
280 | reg cal2_ref_req; |
---|
281 | reg [3:0] cal2_state; |
---|
282 | reg cal3_data_match; |
---|
283 | reg cal3_data_match_stgd; |
---|
284 | wire cal3_data_valid; |
---|
285 | wire cal3_match_found; |
---|
286 | wire [4:0] cal3_rden_dly; |
---|
287 | reg [4:0] cal3_rden_srl_a; |
---|
288 | reg [2:0] cal3_state; |
---|
289 | wire cal4_data_good; |
---|
290 | reg cal4_data_match; |
---|
291 | reg cal4_data_match_stgd; |
---|
292 | wire cal4_data_valid; |
---|
293 | reg cal4_dlyce_gate; |
---|
294 | reg cal4_dlyinc_gate; |
---|
295 | reg cal4_dlyrst_gate; |
---|
296 | reg [4:0] cal4_gate_srl_a; |
---|
297 | reg [5:0] cal4_idel_adj_cnt; |
---|
298 | reg cal4_idel_adj_inc; |
---|
299 | reg cal4_idel_bit_tap; |
---|
300 | reg [5:0] cal4_idel_tap_cnt; |
---|
301 | reg cal4_idel_max_tap; |
---|
302 | reg [4:0] cal4_rden_srl_a; |
---|
303 | reg cal4_ref_req; |
---|
304 | reg cal4_seek_left; |
---|
305 | reg cal4_stable_window; |
---|
306 | reg [2:0] cal4_state; |
---|
307 | reg [3:0] cal4_window_cnt; |
---|
308 | reg [3:0] calib_done_tmp; // only for stg1/2/4 |
---|
309 | reg calib_ctrl_gate_pulse_r; |
---|
310 | reg calib_ctrl_rden; |
---|
311 | reg calib_ctrl_rden_r; |
---|
312 | wire calib_ctrl_rden_negedge; |
---|
313 | reg calib_ctrl_rden_negedge_r; |
---|
314 | reg [3:0] calib_done_r; |
---|
315 | reg [3:0] calib_err; |
---|
316 | reg [1:0] calib_err_2; |
---|
317 | wire calib_init_gate_pulse; |
---|
318 | reg calib_init_gate_pulse_r; |
---|
319 | reg calib_init_gate_pulse_r1; |
---|
320 | reg calib_init_rden; |
---|
321 | reg calib_init_rden_r; |
---|
322 | reg [4:0] calib_rden_srl_a; |
---|
323 | wire [4:0] calib_rden_srl_a_r; |
---|
324 | reg [(5*DQS_WIDTH)-1:0] calib_rden_dly; |
---|
325 | reg calib_rden_edge_r; |
---|
326 | reg [4:0] calib_rden_pipe_cnt; |
---|
327 | wire calib_rden_srl_out; |
---|
328 | wire calib_rden_srl_out_r; |
---|
329 | reg calib_rden_srl_out_r1; |
---|
330 | reg calib_rden_valid; |
---|
331 | reg calib_rden_valid_stgd; |
---|
332 | reg [DQ_BITS-1:0] count_dq; |
---|
333 | reg [DQS_BITS_FIX-1:0] count_dqs; |
---|
334 | reg [DQS_BITS_FIX-1:0] count_gate; |
---|
335 | reg [DQS_BITS_FIX-1:0] count_rden; |
---|
336 | reg ctrl_rden_r; |
---|
337 | wire dlyce_or; |
---|
338 | reg [(5*DQS_WIDTH)-1:0] gate_dly; |
---|
339 | wire [(5*DQS_WIDTH)-1:0] gate_dly_r; |
---|
340 | wire gate_srl_in; |
---|
341 | wire [DQS_WIDTH-1:0] gate_srl_out; |
---|
342 | wire [DQS_WIDTH-1:0] gate_srl_out_r; |
---|
343 | reg [2:0] idel_set_cnt; |
---|
344 | wire idel_set_wait; |
---|
345 | reg [DQ_BITS-1:0] next_count_dq; |
---|
346 | reg [DQS_BITS_FIX-1:0] next_count_dqs; |
---|
347 | reg [DQS_BITS_FIX-1:0] next_count_gate; |
---|
348 | reg phy_init_rden_r; |
---|
349 | reg phy_init_rden_r1; |
---|
350 | reg [DQS_WIDTH-1:0] rd_data_fall_1x_bit1_r1; |
---|
351 | reg [DQ_WIDTH-1:0] rd_data_fall_1x_r; |
---|
352 | reg [DQS_WIDTH-1:0] rd_data_fall_1x_r1; |
---|
353 | reg [DQS_WIDTH-1:0] rd_data_fall_2x_bit1_r; |
---|
354 | reg [DQS_WIDTH-1:0] rd_data_fall_2x_r; |
---|
355 | wire [DQS_WIDTH-1:0] rd_data_fall_chk_q1; |
---|
356 | wire [DQS_WIDTH-1:0] rd_data_fall_chk_q1_bit1; |
---|
357 | wire [DQS_WIDTH-1:0] rd_data_fall_chk_q2; |
---|
358 | wire [DQS_WIDTH-1:0] rd_data_fall_chk_q2_bit1; |
---|
359 | reg [DQS_WIDTH-1:0] rd_data_rise_1x_bit1_r1; |
---|
360 | reg [DQ_WIDTH-1:0] rd_data_rise_1x_r; |
---|
361 | reg [DQS_WIDTH-1:0] rd_data_rise_1x_r1; |
---|
362 | reg [DQS_WIDTH-1:0] rd_data_rise_2x_bit1_r; |
---|
363 | reg [DQS_WIDTH-1:0] rd_data_rise_2x_r; |
---|
364 | wire [DQS_WIDTH-1:0] rd_data_rise_chk_q1; |
---|
365 | wire [DQS_WIDTH-1:0] rd_data_rise_chk_q1_bit1; |
---|
366 | wire [DQS_WIDTH-1:0] rd_data_rise_chk_q2; |
---|
367 | wire [DQS_WIDTH-1:0] rd_data_rise_chk_q2_bit1; |
---|
368 | reg rdd_fall_q1; |
---|
369 | reg rdd_fall_q1_bit1; |
---|
370 | reg rdd_fall_q1_bit1_r; |
---|
371 | reg rdd_fall_q1_bit1_r1; |
---|
372 | reg rdd_fall_q1_r; |
---|
373 | reg rdd_fall_q1_r1; |
---|
374 | reg rdd_fall_q2; |
---|
375 | reg rdd_fall_q2_bit1; |
---|
376 | reg rdd_fall_q2_bit1_r; |
---|
377 | reg rdd_fall_q2_r; |
---|
378 | reg rdd_rise_q1; |
---|
379 | reg rdd_rise_q1_bit1; |
---|
380 | reg rdd_rise_q1_bit1_r; |
---|
381 | reg rdd_rise_q1_bit1_r1; |
---|
382 | reg rdd_rise_q1_r; |
---|
383 | reg rdd_rise_q1_r1; |
---|
384 | reg rdd_rise_q2; |
---|
385 | reg rdd_rise_q2_bit1; |
---|
386 | reg rdd_rise_q2_bit1_r; |
---|
387 | reg rdd_rise_q2_r; |
---|
388 | reg [DQS_BITS_FIX-1:0] rdd_mux_sel; |
---|
389 | reg rden_dec; |
---|
390 | reg [(5*DQS_WIDTH)-1:0] rden_dly; |
---|
391 | wire [(5*DQS_WIDTH)-1:0] rden_dly_r; |
---|
392 | reg [4:0] rden_dly_0; |
---|
393 | reg rden_inc; |
---|
394 | reg [DQS_WIDTH-1:0] rden_mux; |
---|
395 | wire [DQS_WIDTH-1:0] rden_srl_out; |
---|
396 | |
---|
397 | // Debug |
---|
398 | integer x; |
---|
399 | reg [5:0] dbg_dq_tap_cnt [DQ_WIDTH-1:0]; |
---|
400 | reg [5:0] dbg_dqs_tap_cnt [DQS_WIDTH-1:0]; |
---|
401 | reg [5:0] dbg_gate_tap_cnt [DQS_WIDTH-1:0]; |
---|
402 | |
---|
403 | //*************************************************************************** |
---|
404 | // Debug output ("dbg_phy_calib_*") |
---|
405 | // NOTES: |
---|
406 | // 1. All debug outputs coming out of PHY_CALIB are clocked off CLKDIV0, |
---|
407 | // although they are also static after calibration is complete. This |
---|
408 | // means the user can either connect them to a Chipscope ILA, or to |
---|
409 | // either a sync/async VIO input block. Using an async VIO has the |
---|
410 | // advantage of not requiring these paths to meet cycle-to-cycle timing. |
---|
411 | // 2. The widths of most of these debug buses are dependent on the # of |
---|
412 | // DQS/DQ bits (e.g. dq_tap_cnt width = 6 * (# of DQ bits) |
---|
413 | // SIGNAL DESCRIPTION: |
---|
414 | // 1. calib_done: 4 bits - each one asserted as each phase of calibration |
---|
415 | // is completed. |
---|
416 | // 2. calib_err: 4 bits - each one asserted when a calibration error |
---|
417 | // encountered for that stage. Some of these bits may not |
---|
418 | // be used (not all cal stages report an error). |
---|
419 | // 3. dq_tap_cnt: final IDELAY tap counts for all DQ IDELAYs |
---|
420 | // 4. dqs_tap_cnt: final IDELAY tap counts for all DQS IDELAYs |
---|
421 | // 5. gate_tap_cnt: final IDELAY tap counts for all DQS gate |
---|
422 | // synchronization IDELAYs |
---|
423 | // 6. rd_data_sel: final read capture MUX (either "positive" or "negative" |
---|
424 | // edge capture) settings for all DQS groups |
---|
425 | // 7. rden_dly: related to # of cycles after issuing a read until when |
---|
426 | // read data is valid - for all DQS groups |
---|
427 | // 8. gate_dly: related to # of cycles after issuing a read until when |
---|
428 | // clock enable for all DQ's is deasserted to prevent |
---|
429 | // effect of DQS postamble glitch - for all DQS groups |
---|
430 | //*************************************************************************** |
---|
431 | |
---|
432 | //***************************************************************** |
---|
433 | // Record IDELAY tap values by "snooping" IDELAY control signals |
---|
434 | //***************************************************************** |
---|
435 | |
---|
436 | // record DQ IDELAY tap values |
---|
437 | genvar dbg_dq_tc_i; |
---|
438 | generate |
---|
439 | for (dbg_dq_tc_i = 0; dbg_dq_tc_i < DQ_WIDTH; |
---|
440 | dbg_dq_tc_i = dbg_dq_tc_i + 1) begin: gen_dbg_dq_tap_cnt |
---|
441 | assign dbg_calib_dq_tap_cnt[(6*dbg_dq_tc_i)+5:(6*dbg_dq_tc_i)] |
---|
442 | = dbg_dq_tap_cnt[dbg_dq_tc_i]; |
---|
443 | always @(posedge clkdiv) |
---|
444 | if (rstdiv | dlyrst_dq) |
---|
445 | dbg_dq_tap_cnt[dbg_dq_tc_i] <= 6'b000000; |
---|
446 | else |
---|
447 | if (dlyce_dq[dbg_dq_tc_i]) |
---|
448 | if (dlyinc_dq[dbg_dq_tc_i]) |
---|
449 | dbg_dq_tap_cnt[dbg_dq_tc_i] |
---|
450 | <= dbg_dq_tap_cnt[dbg_dq_tc_i] + 1; |
---|
451 | else |
---|
452 | dbg_dq_tap_cnt[dbg_dq_tc_i] |
---|
453 | <= dbg_dq_tap_cnt[dbg_dq_tc_i] - 1; |
---|
454 | end |
---|
455 | endgenerate |
---|
456 | |
---|
457 | // record DQS IDELAY tap values |
---|
458 | genvar dbg_dqs_tc_i; |
---|
459 | generate |
---|
460 | for (dbg_dqs_tc_i = 0; dbg_dqs_tc_i < DQS_WIDTH; |
---|
461 | dbg_dqs_tc_i = dbg_dqs_tc_i + 1) begin: gen_dbg_dqs_tap_cnt |
---|
462 | assign dbg_calib_dqs_tap_cnt[(6*dbg_dqs_tc_i)+5:(6*dbg_dqs_tc_i)] |
---|
463 | = dbg_dqs_tap_cnt[dbg_dqs_tc_i]; |
---|
464 | always @(posedge clkdiv) |
---|
465 | if (rstdiv | dlyrst_dqs) |
---|
466 | dbg_dqs_tap_cnt[dbg_dqs_tc_i] <= 6'b000000; |
---|
467 | else |
---|
468 | if (dlyce_dqs[dbg_dqs_tc_i]) |
---|
469 | if (dlyinc_dqs[dbg_dqs_tc_i]) |
---|
470 | dbg_dqs_tap_cnt[dbg_dqs_tc_i] |
---|
471 | <= dbg_dqs_tap_cnt[dbg_dqs_tc_i] + 1; |
---|
472 | else |
---|
473 | dbg_dqs_tap_cnt[dbg_dqs_tc_i] |
---|
474 | <= dbg_dqs_tap_cnt[dbg_dqs_tc_i] - 1; |
---|
475 | end |
---|
476 | endgenerate |
---|
477 | |
---|
478 | // record DQS gate IDELAY tap values |
---|
479 | genvar dbg_gate_tc_i; |
---|
480 | generate |
---|
481 | for (dbg_gate_tc_i = 0; dbg_gate_tc_i < DQS_WIDTH; |
---|
482 | dbg_gate_tc_i = dbg_gate_tc_i + 1) begin: gen_dbg_gate_tap_cnt |
---|
483 | assign dbg_calib_gate_tap_cnt[(6*dbg_gate_tc_i)+5:(6*dbg_gate_tc_i)] |
---|
484 | = dbg_gate_tap_cnt[dbg_gate_tc_i]; |
---|
485 | always @(posedge clkdiv) |
---|
486 | if (rstdiv | dlyrst_gate[dbg_gate_tc_i]) |
---|
487 | dbg_gate_tap_cnt[dbg_gate_tc_i] <= 6'b000000; |
---|
488 | else |
---|
489 | if (dlyce_gate[dbg_gate_tc_i]) |
---|
490 | if (dlyinc_gate[dbg_gate_tc_i]) |
---|
491 | dbg_gate_tap_cnt[dbg_gate_tc_i] |
---|
492 | <= dbg_gate_tap_cnt[dbg_gate_tc_i] + 1; |
---|
493 | else |
---|
494 | dbg_gate_tap_cnt[dbg_gate_tc_i] |
---|
495 | <= dbg_gate_tap_cnt[dbg_gate_tc_i] - 1; |
---|
496 | end |
---|
497 | endgenerate |
---|
498 | |
---|
499 | assign dbg_calib_done = calib_done; |
---|
500 | assign dbg_calib_err = calib_err; |
---|
501 | assign dbg_calib_rd_data_sel = cal2_rd_data_sel; |
---|
502 | assign dbg_calib_rden_dly = rden_dly; |
---|
503 | assign dbg_calib_gate_dly = gate_dly; |
---|
504 | |
---|
505 | //*************************************************************************** |
---|
506 | // Read data pipelining, and read data "ISERDES" data width expansion |
---|
507 | //*************************************************************************** |
---|
508 | |
---|
509 | // For all data bits, register incoming capture data to slow clock to improve |
---|
510 | // timing. Adding single pipeline stage does not affect functionality (as |
---|
511 | // long as we make sure to wait extra clock cycle after changing DQ IDELAY) |
---|
512 | // Also note in this case that we're "missing" every other clock cycle's |
---|
513 | // worth of data capture since we're sync'ing to the slow clock. This is |
---|
514 | // fine for stage 1 and stage 2 cal, but not for stage 3 and 4 (see below |
---|
515 | // for different circuit to handle those stages) |
---|
516 | always @(posedge clkdiv) begin |
---|
517 | rd_data_rise_1x_r <= rd_data_rise; |
---|
518 | rd_data_fall_1x_r <= rd_data_fall; |
---|
519 | end |
---|
520 | |
---|
521 | // For every DQ_PER_DQS bit, generate what is essentially a ISERDES-type |
---|
522 | // data width expander. Will need this for stage 3 and 4 cal, where we need |
---|
523 | // to compare data over consecutive clock cycles. We can also use this for |
---|
524 | // stage 2 as well (stage 2 doesn't require every bit to be looked at, only |
---|
525 | // one bit per DQS group) |
---|
526 | // MIG 3.3: Expand to use lower two bits of each DQS group - use for stage |
---|
527 | // 3 calibration for added robustness, since we will be checking for the |
---|
528 | // training pattern from the memory even when the data bus is 3-stated. |
---|
529 | // Theoretically it is possible for whatever garbage data is on the bus |
---|
530 | // to be interpreted as the training sequence, although this can be made |
---|
531 | // very unlikely by the choice of training sequence (bit sequence, length) |
---|
532 | // and the number of bits compared for each DQS group. |
---|
533 | genvar rdd_i; |
---|
534 | generate |
---|
535 | for (rdd_i = 0; rdd_i < DQS_WIDTH; rdd_i = rdd_i + 1) begin: gen_rdd |
---|
536 | // first stage: keep data in fast clk domain. Store data over two |
---|
537 | // consecutive clock cycles for rise/fall data for proper transfer |
---|
538 | // to slow clock domain |
---|
539 | always @(posedge clk) begin |
---|
540 | rd_data_rise_2x_r[rdd_i] <= rd_data_rise[(rdd_i*DQ_PER_DQS)]; |
---|
541 | rd_data_fall_2x_r[rdd_i] <= rd_data_fall[(rdd_i*DQ_PER_DQS)]; |
---|
542 | rd_data_rise_2x_bit1_r[rdd_i] <= rd_data_rise[(rdd_i*DQ_PER_DQS)+1]; |
---|
543 | rd_data_fall_2x_bit1_r[rdd_i] <= rd_data_fall[(rdd_i*DQ_PER_DQS)+1]; |
---|
544 | end |
---|
545 | // second stage, register first stage to slow clock domain, 2nd stage |
---|
546 | // consists of both these flops, and the rd_data_rise_1x_r flops |
---|
547 | always @(posedge clkdiv) begin |
---|
548 | rd_data_rise_1x_r1[rdd_i] <= rd_data_rise_2x_r[rdd_i]; |
---|
549 | rd_data_fall_1x_r1[rdd_i] <= rd_data_fall_2x_r[rdd_i]; |
---|
550 | rd_data_rise_1x_bit1_r1[rdd_i] <= rd_data_rise_2x_bit1_r[rdd_i]; |
---|
551 | rd_data_fall_1x_bit1_r1[rdd_i] <= rd_data_fall_2x_bit1_r[rdd_i]; |
---|
552 | end |
---|
553 | // now we have four outputs - representing rise/fall outputs over last |
---|
554 | // 2 fast clock cycles. However, the ordering these represent can either |
---|
555 | // be: (1) Q2 = data @ time = n, Q1 = data @ time = n+1, or (2) |
---|
556 | // Q2 = data @ time = n - 1, Q1 = data @ time = n (and data at [Q1,Q2] |
---|
557 | // is "staggered") - leave it up to the stage of calibration using this |
---|
558 | // to figure out which is which, if they care at all (e.g. stage 2 cal |
---|
559 | // doesn't care about the ordering) |
---|
560 | assign rd_data_rise_chk_q1[rdd_i] |
---|
561 | = rd_data_rise_1x_r[(rdd_i*DQ_PER_DQS)]; |
---|
562 | assign rd_data_rise_chk_q2[rdd_i] |
---|
563 | = rd_data_rise_1x_r1[rdd_i]; |
---|
564 | assign rd_data_fall_chk_q1[rdd_i] |
---|
565 | = rd_data_fall_1x_r[(rdd_i*DQ_PER_DQS)]; |
---|
566 | assign rd_data_fall_chk_q2[rdd_i] |
---|
567 | = rd_data_fall_1x_r1[rdd_i]; |
---|
568 | // MIG 3.3: Added comparison for second bit in DQS group for stage 3 cal |
---|
569 | assign rd_data_rise_chk_q1_bit1[rdd_i] |
---|
570 | = rd_data_rise_1x_r[(rdd_i*DQ_PER_DQS)+1]; |
---|
571 | assign rd_data_rise_chk_q2_bit1[rdd_i] |
---|
572 | = rd_data_rise_1x_bit1_r1[rdd_i]; |
---|
573 | assign rd_data_fall_chk_q1_bit1[rdd_i] |
---|
574 | = rd_data_fall_1x_r[(rdd_i*DQ_PER_DQS)+1]; |
---|
575 | assign rd_data_fall_chk_q2_bit1[rdd_i] |
---|
576 | = rd_data_fall_1x_bit1_r1[rdd_i]; |
---|
577 | end |
---|
578 | endgenerate |
---|
579 | |
---|
580 | //***************************************************************** |
---|
581 | // Outputs of these simplified ISERDES circuits then feed MUXes based on |
---|
582 | // which DQ the current calibration algorithm needs to look at |
---|
583 | //***************************************************************** |
---|
584 | |
---|
585 | // generate MUX control; assume that adding an extra pipeline stage isn't |
---|
586 | // an issue - whatever stage cal logic is using output of MUX will wait |
---|
587 | // enough time after changing it |
---|
588 | always @(posedge clkdiv) begin |
---|
589 | (* full_case, parallel_case *) case (calib_done[2:0]) |
---|
590 | 3'b001: rdd_mux_sel <= next_count_dqs; |
---|
591 | 3'b011: rdd_mux_sel <= count_rden; |
---|
592 | 3'b111: rdd_mux_sel <= next_count_gate; |
---|
593 | default: rdd_mux_sel <= {DQS_BITS_FIX{1'bx}}; |
---|
594 | endcase |
---|
595 | end |
---|
596 | |
---|
597 | always @(posedge clkdiv) begin |
---|
598 | rdd_rise_q1 <= rd_data_rise_chk_q1[rdd_mux_sel]; |
---|
599 | rdd_rise_q2 <= rd_data_rise_chk_q2[rdd_mux_sel]; |
---|
600 | rdd_fall_q1 <= rd_data_fall_chk_q1[rdd_mux_sel]; |
---|
601 | rdd_fall_q2 <= rd_data_fall_chk_q2[rdd_mux_sel]; |
---|
602 | rdd_rise_q1_bit1 <= rd_data_rise_chk_q1_bit1[rdd_mux_sel]; |
---|
603 | rdd_rise_q2_bit1 <= rd_data_rise_chk_q2_bit1[rdd_mux_sel]; |
---|
604 | rdd_fall_q1_bit1 <= rd_data_fall_chk_q1_bit1[rdd_mux_sel]; |
---|
605 | rdd_fall_q2_bit1 <= rd_data_fall_chk_q2_bit1[rdd_mux_sel]; |
---|
606 | end |
---|
607 | |
---|
608 | //*************************************************************************** |
---|
609 | // Demultiplexor to control (reset, increment, decrement) IDELAY tap values |
---|
610 | // For DQ: |
---|
611 | // STG1: for per-bit-deskew, only inc/dec the current DQ. For non-per |
---|
612 | // deskew, increment all bits in the current DQS set |
---|
613 | // STG2: inc/dec all DQ's in the current DQS set. |
---|
614 | // NOTE: Nice to add some error checking logic here (or elsewhere in the |
---|
615 | // code) to check if logic attempts to overflow tap value |
---|
616 | //*************************************************************************** |
---|
617 | |
---|
618 | // don't use DLYRST to reset value of IDELAY after reset. Need to change this |
---|
619 | // if we want to allow user to recalibrate after initial reset |
---|
620 | always @(posedge clkdiv) |
---|
621 | if (rstdiv) begin |
---|
622 | dlyrst_dq <= 1'b1; |
---|
623 | dlyrst_dqs <= 1'b1; |
---|
624 | end else begin |
---|
625 | dlyrst_dq <= 1'b0; |
---|
626 | dlyrst_dqs <= 1'b0; |
---|
627 | end |
---|
628 | |
---|
629 | always @(posedge clkdiv) begin |
---|
630 | if (rstdiv) begin |
---|
631 | dlyce_dq <= 'b0; |
---|
632 | dlyinc_dq <= 'b0; |
---|
633 | dlyce_dqs <= 'b0; |
---|
634 | dlyinc_dqs <= 'b0; |
---|
635 | end else begin |
---|
636 | dlyce_dq <= 'b0; |
---|
637 | dlyinc_dq <= 'b0; |
---|
638 | dlyce_dqs <= 'b0; |
---|
639 | dlyinc_dqs <= 'b0; |
---|
640 | |
---|
641 | // stage 1 cal: change only specified DQ |
---|
642 | if (cal1_dlyce_dq) begin |
---|
643 | if (SIM_ONLY == 0) begin |
---|
644 | dlyce_dq[count_dq] <= 1'b1; |
---|
645 | dlyinc_dq[count_dq] <= cal1_dlyinc_dq; |
---|
646 | end else begin |
---|
647 | // if simulation, then calibrate only first DQ, apply results |
---|
648 | // to all DQs (i.e. assume delay on all DQs is the same) |
---|
649 | for (i = 0; i < DQ_WIDTH; i = i + 1) begin: loop_sim_dq_dly |
---|
650 | dlyce_dq[i] <= 1'b1; |
---|
651 | dlyinc_dq[i] <= cal1_dlyinc_dq; |
---|
652 | end |
---|
653 | end |
---|
654 | end else if (cal2_dlyce_dqs) begin |
---|
655 | // stage 2 cal: change DQS and all corresponding DQ's |
---|
656 | if (SIM_ONLY == 0) begin |
---|
657 | dlyce_dqs[count_dqs] <= 1'b1; |
---|
658 | dlyinc_dqs[count_dqs] <= cal2_dlyinc_dqs; |
---|
659 | for (i = 0; i < DQ_PER_DQS; i = i + 1) begin: loop_dqs_dly |
---|
660 | dlyce_dq[(DQ_PER_DQS*count_dqs)+i] <= 1'b1; |
---|
661 | dlyinc_dq[(DQ_PER_DQS*count_dqs)+i] <= cal2_dlyinc_dqs; |
---|
662 | end |
---|
663 | end else begin |
---|
664 | for (i = 0; i < DQS_WIDTH; i = i + 1) begin: loop_sim_dqs_dly |
---|
665 | // if simulation, then calibrate only first DQS |
---|
666 | dlyce_dqs[i] <= 1'b1; |
---|
667 | dlyinc_dqs[i] <= cal2_dlyinc_dqs; |
---|
668 | for (j = 0; j < DQ_PER_DQS; j = j + 1) begin: loop_sim_dq_dqs_dly |
---|
669 | dlyce_dq[(DQ_PER_DQS*i)+j] <= 1'b1; |
---|
670 | dlyinc_dq[(DQ_PER_DQS*i)+j] <= cal2_dlyinc_dqs; |
---|
671 | end |
---|
672 | end |
---|
673 | end |
---|
674 | end else if (DEBUG_EN != 0) begin |
---|
675 | // DEBUG: allow user to vary IDELAY tap settings |
---|
676 | // For DQ IDELAY taps |
---|
677 | if (dbg_idel_up_all || dbg_idel_down_all || |
---|
678 | dbg_sel_all_idel_dq) begin |
---|
679 | for (x = 0; x < DQ_WIDTH; x = x + 1) begin: loop_dly_inc_dq |
---|
680 | dlyce_dq[x] <= dbg_idel_up_all | dbg_idel_down_all | |
---|
681 | dbg_idel_up_dq | dbg_idel_down_dq; |
---|
682 | dlyinc_dq[x] <= dbg_idel_up_all | dbg_idel_up_dq; |
---|
683 | end |
---|
684 | end else begin |
---|
685 | dlyce_dq <= 'b0; |
---|
686 | dlyce_dq[dbg_sel_idel_dq] <= dbg_idel_up_dq | |
---|
687 | dbg_idel_down_dq; |
---|
688 | dlyinc_dq[dbg_sel_idel_dq] <= dbg_idel_up_dq; |
---|
689 | end |
---|
690 | // For DQS IDELAY taps |
---|
691 | if (dbg_idel_up_all || dbg_idel_down_all || |
---|
692 | dbg_sel_all_idel_dqs) begin |
---|
693 | for (x = 0; x < DQS_WIDTH; x = x + 1) begin: loop_dly_inc_dqs |
---|
694 | dlyce_dqs[x] <= dbg_idel_up_all | dbg_idel_down_all | |
---|
695 | dbg_idel_up_dqs | dbg_idel_down_dqs; |
---|
696 | dlyinc_dqs[x] <= dbg_idel_up_all | dbg_idel_up_dqs; |
---|
697 | end |
---|
698 | end else begin |
---|
699 | dlyce_dqs <= 'b0; |
---|
700 | dlyce_dqs[dbg_sel_idel_dqs] <= dbg_idel_up_dqs | |
---|
701 | dbg_idel_down_dqs; |
---|
702 | dlyinc_dqs[dbg_sel_idel_dqs] <= dbg_idel_up_dqs; |
---|
703 | end |
---|
704 | end |
---|
705 | end |
---|
706 | end |
---|
707 | |
---|
708 | // GATE synchronization is handled directly by Stage 4 calibration FSM |
---|
709 | always @(posedge clkdiv) |
---|
710 | if (rstdiv) begin |
---|
711 | dlyrst_gate <= {DQS_WIDTH{1'b1}}; |
---|
712 | dlyce_gate <= {DQS_WIDTH{1'b0}}; |
---|
713 | dlyinc_gate <= {DQS_WIDTH{1'b0}}; |
---|
714 | end else begin |
---|
715 | dlyrst_gate <= {DQS_WIDTH{1'b0}}; |
---|
716 | dlyce_gate <= {DQS_WIDTH{1'b0}}; |
---|
717 | dlyinc_gate <= {DQS_WIDTH{1'b0}}; |
---|
718 | |
---|
719 | if (cal4_dlyrst_gate) begin |
---|
720 | if (SIM_ONLY == 0) |
---|
721 | dlyrst_gate[count_gate] <= 1'b1; |
---|
722 | else |
---|
723 | for (i = 0; i < DQS_WIDTH; i = i + 1) begin: loop_gate_sim_dly_rst |
---|
724 | dlyrst_gate[i] <= 1'b1; |
---|
725 | end |
---|
726 | end |
---|
727 | |
---|
728 | if (cal4_dlyce_gate) begin |
---|
729 | if (SIM_ONLY == 0) begin |
---|
730 | dlyce_gate[count_gate] <= 1'b1; |
---|
731 | dlyinc_gate[count_gate] <= cal4_dlyinc_gate; |
---|
732 | end else begin |
---|
733 | // if simulation, then calibrate only first gate |
---|
734 | for (i = 0; i < DQS_WIDTH; i = i + 1) begin: loop_gate_sim_dly |
---|
735 | dlyce_gate[i] <= 1'b1; |
---|
736 | dlyinc_gate[i] <= cal4_dlyinc_gate; |
---|
737 | end |
---|
738 | end |
---|
739 | end else if (DEBUG_EN != 0) begin |
---|
740 | // DEBUG: allow user to vary IDELAY tap settings |
---|
741 | if (dbg_idel_up_all || dbg_idel_down_all || |
---|
742 | dbg_sel_all_idel_gate) begin |
---|
743 | for (x = 0; x < DQS_WIDTH; x = x + 1) begin: loop_dly_inc_gate |
---|
744 | dlyce_gate[x] <= dbg_idel_up_all | dbg_idel_down_all | |
---|
745 | dbg_idel_up_gate | dbg_idel_down_gate; |
---|
746 | dlyinc_gate[x] <= dbg_idel_up_all | dbg_idel_up_gate; |
---|
747 | end |
---|
748 | end else begin |
---|
749 | dlyce_gate <= {DQS_WIDTH{1'b0}}; |
---|
750 | dlyce_gate[dbg_sel_idel_gate] <= dbg_idel_up_gate | |
---|
751 | dbg_idel_down_gate; |
---|
752 | dlyinc_gate[dbg_sel_idel_gate] <= dbg_idel_up_gate; |
---|
753 | end |
---|
754 | end |
---|
755 | end |
---|
756 | |
---|
757 | //*************************************************************************** |
---|
758 | // signal to tell calibration state machines to wait and give IDELAY time to |
---|
759 | // settle after it's value is changed (both time for IDELAY chain to settle, |
---|
760 | // and for settled output to propagate through ISERDES). For general use: use |
---|
761 | // for any calibration state machines that modify any IDELAY. |
---|
762 | // Should give at least enough time for IDELAY output to settle (technically |
---|
763 | // for V5, this should be "glitchless" when IDELAY taps are changed, so don't |
---|
764 | // need any time here), and also time for new data to propagate through both |
---|
765 | // ISERDES and the "RDD" MUX + associated pipelining |
---|
766 | // For now, give very "generous" delay - doesn't really matter since only |
---|
767 | // needed during calibration |
---|
768 | //*************************************************************************** |
---|
769 | |
---|
770 | // determine if calibration polarity has changed |
---|
771 | always @(posedge clkdiv) |
---|
772 | cal2_rd_data_sel_r <= cal2_rd_data_sel; |
---|
773 | |
---|
774 | assign cal2_rd_data_sel_edge = |(cal2_rd_data_sel ^ cal2_rd_data_sel_r); |
---|
775 | |
---|
776 | // combine requests to modify any of the IDELAYs into one. Also when second |
---|
777 | // stage capture "edge" polarity is changed (IDELAY isn't changed in this |
---|
778 | // case, but use the same counter to stall cal logic) |
---|
779 | assign dlyce_or = cal1_dlyce_dq | |
---|
780 | cal2_dlyce_dqs | |
---|
781 | cal2_rd_data_sel_edge | |
---|
782 | cal4_dlyce_gate | |
---|
783 | cal4_dlyrst_gate; |
---|
784 | |
---|
785 | // SYN_NOTE: Can later recode to avoid combinational path |
---|
786 | assign idel_set_wait = dlyce_or || (idel_set_cnt != IDEL_SET_VAL); |
---|
787 | |
---|
788 | always @(posedge clkdiv) |
---|
789 | if (rstdiv) |
---|
790 | idel_set_cnt <= 4'b0000; |
---|
791 | else if (dlyce_or) |
---|
792 | idel_set_cnt <= 4'b0000; |
---|
793 | else if (idel_set_cnt != IDEL_SET_VAL) |
---|
794 | idel_set_cnt <= idel_set_cnt + 1; |
---|
795 | |
---|
796 | // generate request to PHY_INIT logic to issue auto-refresh |
---|
797 | // used by certain states to force prech/auto-refresh part way through |
---|
798 | // calibration to avoid a tRAS violation (which will happen if that |
---|
799 | // stage of calibration lasts long enough). This signal must meet the |
---|
800 | // following requirements: (1) only transition from 0->1 when the refresh |
---|
801 | // request is needed, (2) stay at 1 and only transition 1->0 when |
---|
802 | // CALIB_REF_DONE is asserted |
---|
803 | always @(posedge clkdiv) |
---|
804 | if (rstdiv) |
---|
805 | calib_ref_req <= 1'b0; |
---|
806 | else |
---|
807 | calib_ref_req <= cal1_ref_req | cal2_ref_req | cal4_ref_req; |
---|
808 | |
---|
809 | // stage 1 calibration requests auto-refresh every 4 bits |
---|
810 | generate |
---|
811 | if (DQ_BITS < 2) begin: gen_cal1_refresh_dq_lte4 |
---|
812 | assign cal1_refresh = 1'b0; |
---|
813 | end else begin: gen_cal1_refresh_dq_gt4 |
---|
814 | assign cal1_refresh = (next_count_dq[1:0] == 2'b00); |
---|
815 | end |
---|
816 | endgenerate |
---|
817 | |
---|
818 | //*************************************************************************** |
---|
819 | // First stage calibration: DQ-DQS |
---|
820 | // Definitions: |
---|
821 | // edge: detected when varying IDELAY, and current capture data != prev |
---|
822 | // capture data |
---|
823 | // valid bit window: detected when current capture data == prev capture |
---|
824 | // data for more than half the bit time |
---|
825 | // starting conditions for DQS-DQ phase: |
---|
826 | // case 1: when DQS starts somewhere in rising edge bit window, or |
---|
827 | // on the right edge of the rising bit window. |
---|
828 | // case 2: when DQS starts somewhere in falling edge bit window, or |
---|
829 | // on the right edge of the falling bit window. |
---|
830 | // Algorithm Description: |
---|
831 | // 1. Increment DQ IDELAY until we find an edge. |
---|
832 | // 2. While we're finding the first edge, note whether a valid bit window |
---|
833 | // has been detected before we found an edge. If so, then figure out if |
---|
834 | // this is the rising or falling bit window. If rising, then our starting |
---|
835 | // DQS-DQ phase is case 1. If falling, then it's case 2. If don't detect |
---|
836 | // a valid bit window, then we must have started on the edge of a window. |
---|
837 | // Need to wait until later on to decide which case we are. |
---|
838 | // - Store FIRST_EDGE IDELAY value |
---|
839 | // 3. Now look for second edge. |
---|
840 | // 4. While we're finding the second edge, note whether valid bit window |
---|
841 | // is detected. If so, then use to, along with results from (2) to figure |
---|
842 | // out what the starting case is. If in rising bit window, then we're in |
---|
843 | // case 2. If falling, then case 1. |
---|
844 | // - Store SECOND_EDGE IDELAY value |
---|
845 | // NOTES: |
---|
846 | // a. Finding two edges allows us to calculate the bit time (although |
---|
847 | // not the "same" bit time polarity - need to investigate this |
---|
848 | // more). |
---|
849 | // b. If we run out of taps looking for the second edge, then the bit |
---|
850 | // time must be too long (>= 2.5ns, and DQS-DQ starting phase must be |
---|
851 | // case 1). |
---|
852 | // 5. Calculate absolute amount to delay DQ as: |
---|
853 | // If second edge found, and case 1: |
---|
854 | // - DQ_IDELAY = FIRST_EDGE - 0.5*(SECOND_EDGE - FIRST_EDGE) |
---|
855 | // If second edge found, and case 2: |
---|
856 | // - DQ_IDELAY = SECOND_EDGE - 0.5*(SECOND_EDGE - FIRST_EDGE) |
---|
857 | // If second edge not found, then need to make an approximation on |
---|
858 | // how much to shift by (should be okay, because we have more timing |
---|
859 | // margin): |
---|
860 | // - DQ_IDELAY = FIRST_EDGE - 0.5 * (bit_time) |
---|
861 | // NOTE: Does this account for either case 1 or case 2????? |
---|
862 | // NOTE: It's also possible even when we find the second edge, that |
---|
863 | // to instead just use half the bit time to subtract from either |
---|
864 | // FIRST or SECOND_EDGE. Finding the actual bit time (which is |
---|
865 | // what (SECOND_EDGE - FIRST_EDGE) is, is slightly more accurate, |
---|
866 | // since it takes into account duty cycle distortion. |
---|
867 | // 6. Repeat for each DQ in current DQS set. |
---|
868 | //*************************************************************************** |
---|
869 | |
---|
870 | //***************************************************************** |
---|
871 | // for first stage calibration - used for checking if DQS is aligned to the |
---|
872 | // particular DQ, such that we're in the data valid window. Basically, this |
---|
873 | // is one giant MUX. |
---|
874 | // = [falling data, rising data] |
---|
875 | // = [0, 1] = rising DQS aligned in proper (rising edge) bit window |
---|
876 | // = [1, 0] = rising DQS aligned in wrong (falling edge) bit window |
---|
877 | // = [0, 0], or [1,1] = in uncertain region between windows |
---|
878 | //***************************************************************** |
---|
879 | |
---|
880 | // SYN_NOTE: May have to split this up into multiple levels - MUX can get |
---|
881 | // very wide - as wide as the data bus width |
---|
882 | always @(posedge clkdiv) |
---|
883 | cal1_data_chk_r <= {rd_data_fall_1x_r[next_count_dq], |
---|
884 | rd_data_rise_1x_r[next_count_dq]}; |
---|
885 | |
---|
886 | //***************************************************************** |
---|
887 | // determine when an edge has occurred - when either the current value |
---|
888 | // is different from the previous latched value or when the DATA_CHK |
---|
889 | // outputs are the same (rare, but indicates that we're at an edge) |
---|
890 | // This is only valid when the IDELAY output and propagation of the |
---|
891 | // data through the capture flops has had a chance to settle out. |
---|
892 | //***************************************************************** |
---|
893 | |
---|
894 | // write CAL1_DETECT_EDGE and CAL1_DETECT_STABLE in such a way that |
---|
895 | // if X's are captured on the bus during functional simulation, that |
---|
896 | // the logic will register this as an edge detected. Do this to allow |
---|
897 | // use of this HDL with Denali memory models (Denali models drive DQ |
---|
898 | // to X's on both edges of the data valid window to simulate jitter) |
---|
899 | // This is only done for functional simulation purposes. **Should not** |
---|
900 | // make the final synthesized logic more complicated, but it does make |
---|
901 | // the HDL harder to understand b/c we have to "phrase" the logic |
---|
902 | // slightly differently than when not worrying about X's |
---|
903 | always @(*) begin |
---|
904 | // no edge found if: (1) we have recorded prev edge, and rise |
---|
905 | // data == fall data, (2) we haven't yet recorded prev edge, but |
---|
906 | // rise/fall data is equal to either [0,1] or [1,0] (i.e. rise/fall |
---|
907 | // data isn't either X's, or [0,0] or [1,1], which indicates we're |
---|
908 | // in the middle of an edge, since normally rise != fall data for stg1) |
---|
909 | if ((cal1_data_chk_last_valid && |
---|
910 | (cal1_data_chk_r == cal1_data_chk_last)) || |
---|
911 | (!cal1_data_chk_last_valid && |
---|
912 | ((cal1_data_chk_r == 2'b01) || (cal1_data_chk_r == 2'b10)))) |
---|
913 | cal1_detect_edge = 1'b0; |
---|
914 | else |
---|
915 | cal1_detect_edge = 1'b1; |
---|
916 | end |
---|
917 | |
---|
918 | always @(*) begin |
---|
919 | // assert if we've found a region where data valid window is stable |
---|
920 | // over consecutive IDELAY taps, and either rise/fall = [1,0], or [0,1] |
---|
921 | if ((cal1_data_chk_last_valid && |
---|
922 | (cal1_data_chk_r == cal1_data_chk_last)) && |
---|
923 | ((cal1_data_chk_r == 2'b01) || (cal1_data_chk_r == 2'b10))) |
---|
924 | cal1_detect_stable = 1'b1; |
---|
925 | else |
---|
926 | cal1_detect_stable = 1'b0; |
---|
927 | end |
---|
928 | |
---|
929 | //***************************************************************** |
---|
930 | // Find valid window: keep track of how long we've been in the same data |
---|
931 | // window. If it's been long enough, then declare that we've found a valid |
---|
932 | // window. Also returns whether we found a rising or falling window (only |
---|
933 | // valid when found_window is asserted) |
---|
934 | //***************************************************************** |
---|
935 | |
---|
936 | always @(posedge clkdiv) begin |
---|
937 | if (cal1_state == CAL1_INIT) begin |
---|
938 | cal1_window_cnt <= 4'b0000; |
---|
939 | cal1_found_window <= 1'b0; |
---|
940 | cal1_found_rising <= 1'bx; |
---|
941 | end else if (!cal1_data_chk_last_valid) begin |
---|
942 | // if we haven't stored a previous value of CAL1_DATA_CHK (or it got |
---|
943 | // invalidated because we detected an edge, and are now looking for the |
---|
944 | // second edge), then make sure FOUND_WINDOW deasserted on following |
---|
945 | // clock edge (to avoid finding a false window immediately after finding |
---|
946 | // an edge). Note that because of jitter, it's possible to not find an |
---|
947 | // edge at the end of the IDELAY increment settling time, but to find an |
---|
948 | // edge on the next clock cycle (e.g. during CAL1_FIND_FIRST_EDGE) |
---|
949 | cal1_window_cnt <= 4'b0000; |
---|
950 | cal1_found_window <= 1'b0; |
---|
951 | cal1_found_rising <= 1'bx; |
---|
952 | end else if (((cal1_state == CAL1_FIRST_EDGE_IDEL_WAIT) || |
---|
953 | (cal1_state == CAL1_SECOND_EDGE_IDEL_WAIT)) && |
---|
954 | !idel_set_wait) begin |
---|
955 | // while finding the first and second edges, see if we can detect a |
---|
956 | // stable bit window (occurs over MIN_WIN_SIZE number of taps). If |
---|
957 | // so, then we're away from an edge, and can conclusively determine the |
---|
958 | // starting DQS-DQ phase. |
---|
959 | if (cal1_detect_stable) begin |
---|
960 | cal1_window_cnt <= cal1_window_cnt + 1; |
---|
961 | if (cal1_window_cnt == MIN_WIN_SIZE-1) begin |
---|
962 | cal1_found_window <= 1'b1; |
---|
963 | if (cal1_data_chk_r == 2'b01) |
---|
964 | cal1_found_rising <= 1'b1; |
---|
965 | else |
---|
966 | cal1_found_rising <= 1'b0; |
---|
967 | end |
---|
968 | end else begin |
---|
969 | // otherwise, we're not in a data valid window, reset the window |
---|
970 | // counter, and indicate we're not currently in window. This should |
---|
971 | // happen by design at least once after finding the first edge. |
---|
972 | cal1_window_cnt <= 4'b0000; |
---|
973 | cal1_found_window <= 1'b0; |
---|
974 | cal1_found_rising <= 1'bx; |
---|
975 | end |
---|
976 | end |
---|
977 | end |
---|
978 | |
---|
979 | //***************************************************************** |
---|
980 | // keep track of edge tap counts found, and whether we've |
---|
981 | // incremented to the maximum number of taps allowed |
---|
982 | //***************************************************************** |
---|
983 | |
---|
984 | always @(posedge clkdiv) |
---|
985 | if (cal1_state == CAL1_INIT) begin |
---|
986 | cal1_idel_tap_limit_hit <= 1'b0; |
---|
987 | cal1_idel_tap_cnt <= 6'b000000; |
---|
988 | end else if (cal1_dlyce_dq) begin |
---|
989 | if (cal1_dlyinc_dq) begin |
---|
990 | cal1_idel_tap_cnt <= cal1_idel_tap_cnt + 1; |
---|
991 | cal1_idel_tap_limit_hit <= (cal1_idel_tap_cnt == 6'b111110); |
---|
992 | end else begin |
---|
993 | cal1_idel_tap_cnt <= cal1_idel_tap_cnt - 1; |
---|
994 | cal1_idel_tap_limit_hit <= 1'b0; |
---|
995 | end |
---|
996 | end |
---|
997 | |
---|
998 | //***************************************************************** |
---|
999 | // Pipeline for better timing - amount to decrement by if second |
---|
1000 | // edge not found |
---|
1001 | //***************************************************************** |
---|
1002 | // if only one edge found (possible for low frequencies), then: |
---|
1003 | // 1. Assume starting DQS-DQ phase has DQS in DQ window (aka "case 1") |
---|
1004 | // 2. We have to decrement by (63 - first_edge_tap_cnt) + (BIT_TIME_TAPS/2) |
---|
1005 | // (i.e. decrement by 63-first_edge_tap_cnt to get to right edge of |
---|
1006 | // DQ window. Then decrement again by (BIT_TIME_TAPS/2) to get to center |
---|
1007 | // of DQ window. |
---|
1008 | // 3. Clamp the above value at 63 to ensure we don't underflow IDELAY |
---|
1009 | // (note: clamping happens in the CAL1 state machine) |
---|
1010 | always @(posedge clkdiv) |
---|
1011 | cal1_low_freq_idel_dec |
---|
1012 | <= (7'b0111111 - {1'b0, cal1_first_edge_tap_cnt}) + |
---|
1013 | (BIT_TIME_TAPS/2); |
---|
1014 | |
---|
1015 | //***************************************************************** |
---|
1016 | // Keep track of max taps used during stage 1, use this to limit |
---|
1017 | // the number of taps that can be used in stage 2 |
---|
1018 | //***************************************************************** |
---|
1019 | |
---|
1020 | always @(posedge clkdiv) |
---|
1021 | if (rstdiv) begin |
---|
1022 | cal1_idel_max_tap <= 6'b000000; |
---|
1023 | cal1_idel_max_tap_we <= 1'b0; |
---|
1024 | end else begin |
---|
1025 | // pipeline latch enable for CAL1_IDEL_MAX_TAP - we have plenty |
---|
1026 | // of time, tap count gets updated, then dead cycles waiting for |
---|
1027 | // IDELAY output to settle |
---|
1028 | cal1_idel_max_tap_we <= (cal1_idel_max_tap < cal1_idel_tap_cnt); |
---|
1029 | // record maximum # of taps used for stg 1 cal |
---|
1030 | if ((cal1_state == CAL1_DONE) && cal1_idel_max_tap_we) |
---|
1031 | cal1_idel_max_tap <= cal1_idel_tap_cnt; |
---|
1032 | end |
---|
1033 | |
---|
1034 | //***************************************************************** |
---|
1035 | |
---|
1036 | always @(posedge clkdiv) |
---|
1037 | if (rstdiv) begin |
---|
1038 | calib_done[0] <= 1'b0; |
---|
1039 | calib_done_tmp[0] <= 1'bx; |
---|
1040 | calib_err[0] <= 1'b0; |
---|
1041 | count_dq <= {DQ_BITS{1'b0}}; |
---|
1042 | next_count_dq <= {DQ_BITS{1'b0}}; |
---|
1043 | cal1_bit_time_tap_cnt <= 6'bxxxxxx; |
---|
1044 | cal1_data_chk_last <= 2'bxx; |
---|
1045 | cal1_data_chk_last_valid <= 1'bx; |
---|
1046 | cal1_dlyce_dq <= 1'b0; |
---|
1047 | cal1_dlyinc_dq <= 1'b0; |
---|
1048 | cal1_dqs_dq_init_phase <= 1'bx; |
---|
1049 | cal1_first_edge_done <= 1'bx; |
---|
1050 | cal1_found_second_edge <= 1'bx; |
---|
1051 | cal1_first_edge_tap_cnt <= 6'bxxxxxx; |
---|
1052 | cal1_idel_dec_cnt <= 7'bxxxxxxx; |
---|
1053 | cal1_idel_inc_cnt <= 6'bxxxxxx; |
---|
1054 | cal1_ref_req <= 1'b0; |
---|
1055 | cal1_state <= CAL1_IDLE; |
---|
1056 | end else begin |
---|
1057 | // default values for all "pulse" outputs |
---|
1058 | cal1_ref_req <= 1'b0; |
---|
1059 | cal1_dlyce_dq <= 1'b0; |
---|
1060 | cal1_dlyinc_dq <= 1'b0; |
---|
1061 | |
---|
1062 | case (cal1_state) |
---|
1063 | CAL1_IDLE: begin |
---|
1064 | count_dq <= {DQ_BITS{1'b0}}; |
---|
1065 | next_count_dq <= {DQ_BITS{1'b0}}; |
---|
1066 | if (calib_start[0]) begin |
---|
1067 | calib_done[0] <= 1'b0; |
---|
1068 | calib_done_tmp[0] <= 1'b0; |
---|
1069 | cal1_state <= CAL1_INIT; |
---|
1070 | end |
---|
1071 | end |
---|
1072 | |
---|
1073 | CAL1_INIT: begin |
---|
1074 | cal1_data_chk_last_valid <= 1'b0; |
---|
1075 | cal1_found_second_edge <= 1'b0; |
---|
1076 | cal1_dqs_dq_init_phase <= 1'b0; |
---|
1077 | cal1_idel_inc_cnt <= 6'b000000; |
---|
1078 | cal1_state <= CAL1_INC_IDEL; |
---|
1079 | end |
---|
1080 | |
---|
1081 | // increment DQ IDELAY so that either: (1) DQS starts somewhere in |
---|
1082 | // first rising DQ window, or (2) DQS starts in first falling DQ |
---|
1083 | // window. The amount to shift is frequency dependent (and is either |
---|
1084 | // precalculated by MIG or possibly adjusted by the user) |
---|
1085 | CAL1_INC_IDEL: |
---|
1086 | if ((cal1_idel_inc_cnt == DQ_IDEL_INIT) && !idel_set_wait) begin |
---|
1087 | cal1_state <= CAL1_FIND_FIRST_EDGE; |
---|
1088 | end else if (cal1_idel_inc_cnt != DQ_IDEL_INIT) begin |
---|
1089 | cal1_idel_inc_cnt <= cal1_idel_inc_cnt + 1; |
---|
1090 | cal1_dlyce_dq <= 1'b1; |
---|
1091 | cal1_dlyinc_dq <= 1'b1; |
---|
1092 | end |
---|
1093 | |
---|
1094 | // look for first edge |
---|
1095 | CAL1_FIND_FIRST_EDGE: begin |
---|
1096 | // Determine DQS-DQ phase if we can detect enough of a valid window |
---|
1097 | if (cal1_found_window) |
---|
1098 | cal1_dqs_dq_init_phase <= ~cal1_found_rising; |
---|
1099 | // find first edge - if found then record position |
---|
1100 | if (cal1_detect_edge) begin |
---|
1101 | cal1_state <= CAL1_FOUND_FIRST_EDGE_WAIT; |
---|
1102 | cal1_first_edge_done <= 1'b0; |
---|
1103 | cal1_first_edge_tap_cnt <= cal1_idel_tap_cnt; |
---|
1104 | cal1_data_chk_last_valid <= 1'b0; |
---|
1105 | end else begin |
---|
1106 | // otherwise, store the current value of DATA_CHK, increment |
---|
1107 | // DQ IDELAY, and compare again |
---|
1108 | cal1_state <= CAL1_FIRST_EDGE_IDEL_WAIT; |
---|
1109 | cal1_data_chk_last <= cal1_data_chk_r; |
---|
1110 | // avoid comparing against DATA_CHK_LAST for previous iteration |
---|
1111 | cal1_data_chk_last_valid <= 1'b1; |
---|
1112 | cal1_dlyce_dq <= 1'b1; |
---|
1113 | cal1_dlyinc_dq <= 1'b1; |
---|
1114 | end |
---|
1115 | end |
---|
1116 | |
---|
1117 | // wait for DQ IDELAY to settle |
---|
1118 | CAL1_FIRST_EDGE_IDEL_WAIT: |
---|
1119 | if (!idel_set_wait) |
---|
1120 | cal1_state <= CAL1_FIND_FIRST_EDGE; |
---|
1121 | |
---|
1122 | // delay state between finding first edge and looking for second |
---|
1123 | // edge. Necessary in order to invalidate CAL1_FOUND_WINDOW before |
---|
1124 | // starting to look for second edge |
---|
1125 | CAL1_FOUND_FIRST_EDGE_WAIT: |
---|
1126 | cal1_state <= CAL1_FIND_SECOND_EDGE; |
---|
1127 | |
---|
1128 | // Try and find second edge |
---|
1129 | CAL1_FIND_SECOND_EDGE: begin |
---|
1130 | // When looking for 2nd edge, first make sure data stabilized (by |
---|
1131 | // detecting valid data window) - needed to avoid false edges |
---|
1132 | if (cal1_found_window) begin |
---|
1133 | cal1_first_edge_done <= 1'b1; |
---|
1134 | cal1_dqs_dq_init_phase <= cal1_found_rising; |
---|
1135 | end |
---|
1136 | // exit if run out of taps to increment |
---|
1137 | if (cal1_idel_tap_limit_hit) |
---|
1138 | cal1_state <= CAL1_CALC_IDEL; |
---|
1139 | else begin |
---|
1140 | // found second edge, record the current edge count |
---|
1141 | if (cal1_first_edge_done && cal1_detect_edge) begin |
---|
1142 | cal1_state <= CAL1_CALC_IDEL; |
---|
1143 | cal1_found_second_edge <= 1'b1; |
---|
1144 | cal1_bit_time_tap_cnt <= cal1_idel_tap_cnt - |
---|
1145 | cal1_first_edge_tap_cnt + 1; |
---|
1146 | end else begin |
---|
1147 | cal1_state <= CAL1_SECOND_EDGE_IDEL_WAIT; |
---|
1148 | cal1_data_chk_last <= cal1_data_chk_r; |
---|
1149 | cal1_data_chk_last_valid <= 1'b1; |
---|
1150 | cal1_dlyce_dq <= 1'b1; |
---|
1151 | cal1_dlyinc_dq <= 1'b1; |
---|
1152 | end |
---|
1153 | end |
---|
1154 | end |
---|
1155 | |
---|
1156 | // wait for DQ IDELAY to settle, then store ISERDES output |
---|
1157 | CAL1_SECOND_EDGE_IDEL_WAIT: |
---|
1158 | if (!idel_set_wait) |
---|
1159 | cal1_state <= CAL1_FIND_SECOND_EDGE; |
---|
1160 | |
---|
1161 | // pipeline delay state to calculate amount to decrement DQ IDELAY |
---|
1162 | // NOTE: We're calculating the amount to decrement by, not the |
---|
1163 | // absolute setting for DQ IDELAY |
---|
1164 | CAL1_CALC_IDEL: begin |
---|
1165 | // if two edges found |
---|
1166 | if (cal1_found_second_edge) |
---|
1167 | // case 1: DQS was in DQ window to start with. First edge found |
---|
1168 | // corresponds to left edge of DQ rising window. Backup by 1.5*BT |
---|
1169 | // NOTE: In this particular case, it is possible to decrement |
---|
1170 | // "below 0" in the case where DQS delay is less than 0.5*BT, |
---|
1171 | // need to limit decrement to prevent IDELAY tap underflow |
---|
1172 | if (!cal1_dqs_dq_init_phase) |
---|
1173 | cal1_idel_dec_cnt <= {1'b0, cal1_bit_time_tap_cnt} + |
---|
1174 | {1'b0, (cal1_bit_time_tap_cnt >> 1)}; |
---|
1175 | // case 2: DQS was in wrong DQ window (in DQ falling window). |
---|
1176 | // First edge found is right edge of DQ rising window. Second |
---|
1177 | // edge is left edge of DQ rising window. Backup by 0.5*BT |
---|
1178 | else |
---|
1179 | cal1_idel_dec_cnt <= {1'b0, (cal1_bit_time_tap_cnt >> 1)}; |
---|
1180 | // if only one edge found - assume will always be case 1 - DQS in |
---|
1181 | // DQS window. Case 2 only possible if path delay on DQS > 5ns |
---|
1182 | else |
---|
1183 | cal1_idel_dec_cnt <= cal1_low_freq_idel_dec; |
---|
1184 | cal1_state <= CAL1_DEC_IDEL; |
---|
1185 | end |
---|
1186 | |
---|
1187 | // decrement DQ IDELAY for final adjustment |
---|
1188 | CAL1_DEC_IDEL: |
---|
1189 | // once adjustment is complete, we're done with calibration for |
---|
1190 | // this DQ, now return to IDLE state and repeat for next DQ |
---|
1191 | // Add underflow protection for case of 2 edges found and DQS |
---|
1192 | // starting in DQ window (see comments for above state) - note we |
---|
1193 | // have to take into account delayed value of CAL1_IDEL_TAP_CNT - |
---|
1194 | // gets updated one clock cycle after CAL1_DLYCE/INC_DQ |
---|
1195 | if ((cal1_idel_dec_cnt == 7'b0000000) || |
---|
1196 | (cal1_dlyce_dq && (cal1_idel_tap_cnt == 6'b000001))) begin |
---|
1197 | cal1_state <= CAL1_DONE; |
---|
1198 | // stop when all DQ's calibrated, or DQ[0] cal'ed (for sim) |
---|
1199 | if ((count_dq == DQ_WIDTH-1) || (SIM_ONLY != 0)) |
---|
1200 | calib_done_tmp[0] <= 1'b1; |
---|
1201 | else |
---|
1202 | // need for VHDL simulation to prevent out-of-index error |
---|
1203 | next_count_dq <= count_dq + 1; |
---|
1204 | end else begin |
---|
1205 | // keep decrementing until final tap count reached |
---|
1206 | cal1_idel_dec_cnt <= cal1_idel_dec_cnt - 1; |
---|
1207 | cal1_dlyce_dq <= 1'b1; |
---|
1208 | cal1_dlyinc_dq <= 1'b0; |
---|
1209 | end |
---|
1210 | |
---|
1211 | // delay state to allow count_dq and DATA_CHK to point to the next |
---|
1212 | // DQ bit (allows us to potentially begin checking for an edge on |
---|
1213 | // next DQ right away). |
---|
1214 | CAL1_DONE: |
---|
1215 | if (!idel_set_wait) begin |
---|
1216 | count_dq <= next_count_dq; |
---|
1217 | if (calib_done_tmp[0]) begin |
---|
1218 | calib_done[0] <= 1'b1; |
---|
1219 | cal1_state <= CAL1_IDLE; |
---|
1220 | end else begin |
---|
1221 | // request auto-refresh after every 8-bits calibrated to |
---|
1222 | // avoid tRAS violation |
---|
1223 | if (cal1_refresh) begin |
---|
1224 | cal1_ref_req <= 1'b1; |
---|
1225 | if (calib_ref_done) |
---|
1226 | cal1_state <= CAL1_INIT; |
---|
1227 | end else |
---|
1228 | // if no need this time for refresh, proceed to next bit |
---|
1229 | cal1_state <= CAL1_INIT; |
---|
1230 | end |
---|
1231 | end |
---|
1232 | endcase |
---|
1233 | end |
---|
1234 | |
---|
1235 | //*************************************************************************** |
---|
1236 | // Second stage calibration: DQS-FPGA Clock |
---|
1237 | // Algorithm Description: |
---|
1238 | // 1. Assumes a training pattern that will produce a pattern oscillating at |
---|
1239 | // half the core clock frequency each on rise and fall outputs, and such |
---|
1240 | // that rise and fall outputs are 180 degrees out of phase from each |
---|
1241 | // other. Note that since the calibration logic runs at half the speed |
---|
1242 | // of the interface, expect that data sampled with the slow clock always |
---|
1243 | // to be constant (either always = 1, or = 0, and rise data != fall data) |
---|
1244 | // unless we cross the edge of the data valid window |
---|
1245 | // 2. Start by setting RD_DATA_SEL = 0. This selects the rising capture data |
---|
1246 | // sync'ed to rising edge of core clock, and falling edge data sync'ed |
---|
1247 | // to falling edge of core clock |
---|
1248 | // 3. Start looking for an edge. An edge is defined as either: (1) a |
---|
1249 | // change in capture value or (2) an invalid capture value (e.g. rising |
---|
1250 | // data != falling data for that same clock cycle). |
---|
1251 | // 4. If an edge is found, go to step (6). If edge hasn't been found, then |
---|
1252 | // set RD_DATA_SEL = 1, and try again. |
---|
1253 | // 5. If no edge is found, then increment IDELAY and return to step (3) |
---|
1254 | // 6. If an edge if found, then invert RD_DATA_SEL - this shifts the |
---|
1255 | // capture point 180 degrees from the edge of the window (minus duty |
---|
1256 | // cycle distortion, delay skew between rising/falling edge capture |
---|
1257 | // paths, etc.) |
---|
1258 | // 7. If no edge is found by CAL2_IDEL_TAP_LIMIT (= 63 - # taps used for |
---|
1259 | // stage 1 calibration), then decrement IDELAY (without reinverting |
---|
1260 | // RD_DATA_SEL) by CAL2_IDEL_TAP_LIMIT/2. This guarantees we at least |
---|
1261 | // have CAL2_IDEL_TAP_LIMIT/2 of slack both before and after the |
---|
1262 | // capture point (not optimal, but best we can do not having found an |
---|
1263 | // of the window). This happens only for very low frequencies. |
---|
1264 | // 8. Repeat for each DQS group. |
---|
1265 | // NOTE: Step 6 is not optimal. A better (and perhaps more complicated) |
---|
1266 | // algorithm might be to find both edges of the data valid window (using |
---|
1267 | // the same polarity of RD_DATA_SEL), and then decrement to the midpoint. |
---|
1268 | //*************************************************************************** |
---|
1269 | |
---|
1270 | // RD_DATA_SEL should be tagged with FROM-TO (multi-cycle) constraint in |
---|
1271 | // UCF file to relax timing. This net is "pseudo-static" (after value is |
---|
1272 | // changed, FSM waits number of cycles before using the output). |
---|
1273 | // Note that we are adding one clock cycle of delay (to isolate it from |
---|
1274 | // the other logic CAL2_RD_DATA_SEL feeds), make sure FSM waits long |
---|
1275 | // enough to compensate (by default it does, it waits a few cycles more |
---|
1276 | // than minimum # of clock cycles) |
---|
1277 | genvar rd_i; |
---|
1278 | generate |
---|
1279 | for (rd_i = 0; rd_i < DQS_WIDTH; rd_i = rd_i+1) begin: gen_rd_data_sel |
---|
1280 | FDRSE u_ff_rd_data_sel |
---|
1281 | ( |
---|
1282 | .Q (rd_data_sel[rd_i]), |
---|
1283 | .C (clkdiv), |
---|
1284 | .CE (1'b1), |
---|
1285 | .D (cal2_rd_data_sel[rd_i]), |
---|
1286 | .R (1'b0), |
---|
1287 | .S (1'b0) |
---|
1288 | ) /* synthesis syn_preserve = 1 */ |
---|
1289 | /* synthesis syn_replicate = 0 */; |
---|
1290 | end |
---|
1291 | endgenerate |
---|
1292 | |
---|
1293 | //***************************************************************** |
---|
1294 | // Max number of taps used for stg2 cal dependent on number of taps |
---|
1295 | // used for stg1 (give priority to stg1 cal - let it use as many |
---|
1296 | // taps as it needs - the remainder of the IDELAY taps can be used |
---|
1297 | // by stg2) |
---|
1298 | //***************************************************************** |
---|
1299 | |
---|
1300 | always @(posedge clkdiv) |
---|
1301 | cal2_idel_tap_limit <= 6'b111111 - cal1_idel_max_tap; |
---|
1302 | |
---|
1303 | //***************************************************************** |
---|
1304 | // second stage calibration uses readback pattern of "1100" (i.e. |
---|
1305 | // 1st rising = 1, 1st falling = 1, 2nd rising = 0, 2nd falling = 0) |
---|
1306 | // only look at the first bit of each DQS group |
---|
1307 | //***************************************************************** |
---|
1308 | |
---|
1309 | // deasserted when captured data has changed since IDELAY was |
---|
1310 | // incremented, or when we're right on the edge (i.e. rise data = |
---|
1311 | // fall data). |
---|
1312 | assign cal2_detect_edge = |
---|
1313 | ((((rdd_rise_q1 != cal2_rd_data_rise_last_pos) || |
---|
1314 | (rdd_fall_q1 != cal2_rd_data_fall_last_pos)) && |
---|
1315 | cal2_rd_data_last_valid_pos && (!cal2_curr_sel)) || |
---|
1316 | (((rdd_rise_q1 != cal2_rd_data_rise_last_neg) || |
---|
1317 | (rdd_fall_q1 != cal2_rd_data_fall_last_neg)) && |
---|
1318 | cal2_rd_data_last_valid_neg && (cal2_curr_sel)) || |
---|
1319 | (rdd_rise_q1 != rdd_fall_q1)); |
---|
1320 | |
---|
1321 | //***************************************************************** |
---|
1322 | // keep track of edge tap counts found, and whether we've |
---|
1323 | // incremented to the maximum number of taps allowed |
---|
1324 | // NOTE: Assume stage 2 cal always increments the tap count (never |
---|
1325 | // decrements) when searching for edge of the data valid window |
---|
1326 | //***************************************************************** |
---|
1327 | |
---|
1328 | always @(posedge clkdiv) |
---|
1329 | if (cal2_state == CAL2_INIT) begin |
---|
1330 | cal2_idel_tap_limit_hit <= 1'b0; |
---|
1331 | cal2_idel_tap_cnt <= 6'b000000; |
---|
1332 | end else if (cal2_dlyce_dqs) begin |
---|
1333 | cal2_idel_tap_cnt <= cal2_idel_tap_cnt + 1; |
---|
1334 | cal2_idel_tap_limit_hit <= (cal2_idel_tap_cnt == |
---|
1335 | cal2_idel_tap_limit - 1); |
---|
1336 | end |
---|
1337 | |
---|
1338 | //***************************************************************** |
---|
1339 | |
---|
1340 | always @(posedge clkdiv) |
---|
1341 | if (rstdiv) begin |
---|
1342 | calib_done[1] <= 1'b0; |
---|
1343 | calib_done_tmp[1] <= 1'bx; |
---|
1344 | calib_err[1] <= 1'b0; |
---|
1345 | count_dqs <= 'b0; |
---|
1346 | next_count_dqs <= 'b0; |
---|
1347 | cal2_dlyce_dqs <= 1'b0; |
---|
1348 | cal2_dlyinc_dqs <= 1'b0; |
---|
1349 | cal2_idel_dec_cnt <= 6'bxxxxxx; |
---|
1350 | cal2_rd_data_last_valid_neg <= 1'bx; |
---|
1351 | cal2_rd_data_last_valid_pos <= 1'bx; |
---|
1352 | cal2_rd_data_sel <= 'b0; |
---|
1353 | cal2_ref_req <= 1'b0; |
---|
1354 | cal2_state <= CAL2_IDLE; |
---|
1355 | end else begin |
---|
1356 | cal2_ref_req <= 1'b0; |
---|
1357 | cal2_dlyce_dqs <= 1'b0; |
---|
1358 | cal2_dlyinc_dqs <= 1'b0; |
---|
1359 | |
---|
1360 | case (cal2_state) |
---|
1361 | CAL2_IDLE: begin |
---|
1362 | count_dqs <= 'b0; |
---|
1363 | next_count_dqs <= 'b0; |
---|
1364 | if (calib_start[1]) begin |
---|
1365 | cal2_rd_data_sel <= {DQS_WIDTH{1'b0}}; |
---|
1366 | calib_done[1] <= 1'b0; |
---|
1367 | calib_done_tmp[1] <= 1'b0; |
---|
1368 | cal2_state <= CAL2_INIT; |
---|
1369 | end |
---|
1370 | end |
---|
1371 | |
---|
1372 | // Pass through this state every time we calibrate a new DQS group |
---|
1373 | CAL2_INIT: begin |
---|
1374 | cal2_curr_sel <= 1'b0; |
---|
1375 | cal2_rd_data_last_valid_neg <= 1'b0; |
---|
1376 | cal2_rd_data_last_valid_pos <= 1'b0; |
---|
1377 | cal2_state <= CAL2_INIT_IDEL_WAIT; |
---|
1378 | end |
---|
1379 | |
---|
1380 | // Stall state only used if calibration run more than once. Can take |
---|
1381 | // this state out if design never runs calibration more than once. |
---|
1382 | // We need this state to give time for MUX'ed data to settle after |
---|
1383 | // resetting RD_DATA_SEL |
---|
1384 | CAL2_INIT_IDEL_WAIT: |
---|
1385 | if (!idel_set_wait) |
---|
1386 | cal2_state <= CAL2_FIND_EDGE_POS; |
---|
1387 | |
---|
1388 | // Look for an edge - first check "positive-edge" stage 2 capture |
---|
1389 | CAL2_FIND_EDGE_POS: begin |
---|
1390 | // if found an edge, then switch to the opposite edge stage 2 |
---|
1391 | // capture and we're done - no need to decrement the tap count, |
---|
1392 | // since switching to the opposite edge will shift the capture |
---|
1393 | // point by 180 degrees |
---|
1394 | if (cal2_detect_edge) begin |
---|
1395 | cal2_curr_sel <= 1'b1; |
---|
1396 | cal2_state <= CAL2_DONE; |
---|
1397 | // set all DQS groups to be the same for simulation |
---|
1398 | if (SIM_ONLY != 0) |
---|
1399 | cal2_rd_data_sel <= {DQS_WIDTH{1'b1}}; |
---|
1400 | else |
---|
1401 | cal2_rd_data_sel[count_dqs] <= 1'b1; |
---|
1402 | if ((count_dqs == DQS_WIDTH-1) || (SIM_ONLY != 0)) |
---|
1403 | calib_done_tmp[1] <= 1'b1; |
---|
1404 | else |
---|
1405 | // MIG 2.1: Fix for simulation out-of-bounds error when |
---|
1406 | // SIM_ONLY=0, and DQS_WIDTH=(power of 2) (needed for VHDL) |
---|
1407 | next_count_dqs <= count_dqs + 1; |
---|
1408 | end else begin |
---|
1409 | // otherwise, invert polarity of stage 2 capture and look for |
---|
1410 | // an edge with opposite capture clock polarity |
---|
1411 | cal2_curr_sel <= 1'b1; |
---|
1412 | cal2_rd_data_sel[count_dqs] <= 1'b1; |
---|
1413 | cal2_state <= CAL2_FIND_EDGE_IDEL_WAIT_POS; |
---|
1414 | cal2_rd_data_rise_last_pos <= rdd_rise_q1; |
---|
1415 | cal2_rd_data_fall_last_pos <= rdd_fall_q1; |
---|
1416 | cal2_rd_data_last_valid_pos <= 1'b1; |
---|
1417 | end |
---|
1418 | end |
---|
1419 | |
---|
1420 | // Give time to switch from positive-edge to negative-edge second |
---|
1421 | // stage capture (need time for data to filter though pipe stages) |
---|
1422 | CAL2_FIND_EDGE_IDEL_WAIT_POS: |
---|
1423 | if (!idel_set_wait) |
---|
1424 | cal2_state <= CAL2_FIND_EDGE_NEG; |
---|
1425 | |
---|
1426 | // Look for an edge - check "negative-edge" stage 2 capture |
---|
1427 | CAL2_FIND_EDGE_NEG: |
---|
1428 | if (cal2_detect_edge) begin |
---|
1429 | cal2_curr_sel <= 1'b0; |
---|
1430 | cal2_state <= CAL2_DONE; |
---|
1431 | // set all DQS groups to be the same for simulation |
---|
1432 | if (SIM_ONLY != 0) |
---|
1433 | cal2_rd_data_sel <= {DQS_WIDTH{1'b0}}; |
---|
1434 | else |
---|
1435 | cal2_rd_data_sel[count_dqs] <= 1'b0; |
---|
1436 | if ((count_dqs == DQS_WIDTH-1) || (SIM_ONLY != 0)) |
---|
1437 | calib_done_tmp[1] <= 1'b1; |
---|
1438 | else |
---|
1439 | // MIG 2.1: Fix for simulation out-of-bounds error when |
---|
1440 | // SIM_ONLY=0, and DQS_WIDTH=(power of 2) (needed for VHDL) |
---|
1441 | next_count_dqs <= count_dqs + 1; |
---|
1442 | end else if (cal2_idel_tap_limit_hit) begin |
---|
1443 | // otherwise, if we've run out of taps, then immediately |
---|
1444 | // backoff by half # of taps used - that's our best estimate |
---|
1445 | // for optimal calibration point. Doesn't matter whether which |
---|
1446 | // polarity we're using for capture (we don't know which one is |
---|
1447 | // best to use) |
---|
1448 | cal2_idel_dec_cnt <= {1'b0, cal2_idel_tap_limit[5:1]}; |
---|
1449 | cal2_state <= CAL2_DEC_IDEL; |
---|
1450 | if ((count_dqs == DQS_WIDTH-1) || (SIM_ONLY != 0)) |
---|
1451 | calib_done_tmp[1] <= 1'b1; |
---|
1452 | else |
---|
1453 | // MIG 2.1: Fix for simulation out-of-bounds error when |
---|
1454 | // SIM_ONLY=0, and DQS_WIDTH=(power of 2) (needed for VHDL) |
---|
1455 | next_count_dqs <= count_dqs + 1; |
---|
1456 | end else begin |
---|
1457 | // otherwise, increment IDELAY, and start looking for edge again |
---|
1458 | cal2_curr_sel <= 1'b0; |
---|
1459 | cal2_rd_data_sel[count_dqs] <= 1'b0; |
---|
1460 | cal2_state <= CAL2_FIND_EDGE_IDEL_WAIT_NEG; |
---|
1461 | cal2_rd_data_rise_last_neg <= rdd_rise_q1; |
---|
1462 | cal2_rd_data_fall_last_neg <= rdd_fall_q1; |
---|
1463 | cal2_rd_data_last_valid_neg <= 1'b1; |
---|
1464 | cal2_dlyce_dqs <= 1'b1; |
---|
1465 | cal2_dlyinc_dqs <= 1'b1; |
---|
1466 | end |
---|
1467 | |
---|
1468 | CAL2_FIND_EDGE_IDEL_WAIT_NEG: |
---|
1469 | if (!idel_set_wait) |
---|
1470 | cal2_state <= CAL2_FIND_EDGE_POS; |
---|
1471 | |
---|
1472 | // if no edge found, then decrement by half # of taps used |
---|
1473 | CAL2_DEC_IDEL: begin |
---|
1474 | if (cal2_idel_dec_cnt == 6'b000000) |
---|
1475 | cal2_state <= CAL2_DONE; |
---|
1476 | else begin |
---|
1477 | cal2_idel_dec_cnt <= cal2_idel_dec_cnt - 1; |
---|
1478 | cal2_dlyce_dqs <= 1'b1; |
---|
1479 | cal2_dlyinc_dqs <= 1'b0; |
---|
1480 | end |
---|
1481 | end |
---|
1482 | |
---|
1483 | // delay state to allow count_dqs and ISERDES data to point to next |
---|
1484 | // DQ bit (DQS group) before going to INIT |
---|
1485 | CAL2_DONE: |
---|
1486 | if (!idel_set_wait) begin |
---|
1487 | count_dqs <= next_count_dqs; |
---|
1488 | if (calib_done_tmp[1]) begin |
---|
1489 | calib_done[1] <= 1'b1; |
---|
1490 | cal2_state <= CAL2_IDLE; |
---|
1491 | end else begin |
---|
1492 | // request auto-refresh after every DQS group calibrated to |
---|
1493 | // avoid tRAS violation |
---|
1494 | cal2_ref_req <= 1'b1; |
---|
1495 | if (calib_ref_done) |
---|
1496 | cal2_state <= CAL2_INIT; |
---|
1497 | end |
---|
1498 | end |
---|
1499 | endcase |
---|
1500 | end |
---|
1501 | |
---|
1502 | //*************************************************************************** |
---|
1503 | // Stage 3 calibration: Read Enable |
---|
1504 | // Description: |
---|
1505 | // read enable calibration determines the "round-trip" time (in # of CLK0 |
---|
1506 | // cycles) between when a read command is issued by the controller, and |
---|
1507 | // when the corresponding read data is synchronized by into the CLK0 domain |
---|
1508 | // this is a long delay chain to delay read enable signal from controller/ |
---|
1509 | // initialization logic (i.e. this is used for both initialization and |
---|
1510 | // during normal controller operation). Stage 3 calibration logic decides |
---|
1511 | // which delayed version is appropriate to use (which is affected by the |
---|
1512 | // round trip delay of DQ/DQS) as a "valid" signal to tell rest of logic |
---|
1513 | // when the captured data output from ISERDES is valid. |
---|
1514 | //*************************************************************************** |
---|
1515 | |
---|
1516 | //***************************************************************** |
---|
1517 | // Delay chains: Use shift registers |
---|
1518 | // Two sets of delay chains are used: |
---|
1519 | // 1. One to delay RDEN from PHY_INIT module for calibration |
---|
1520 | // purposes (delay required for RDEN for calibration is different |
---|
1521 | // than during normal operation) |
---|
1522 | // 2. One per DQS group to delay RDEN from controller for normal |
---|
1523 | // operation - the value to delay for each DQS group can be different |
---|
1524 | // as is determined during calibration |
---|
1525 | //***************************************************************** |
---|
1526 | |
---|
1527 | //***************************************************************** |
---|
1528 | // First delay chain, use only for calibration |
---|
1529 | // input = asserted on rising edge of RDEN from PHY_INIT module |
---|
1530 | //***************************************************************** |
---|
1531 | |
---|
1532 | always @(posedge clk) begin |
---|
1533 | ctrl_rden_r <= ctrl_rden; |
---|
1534 | phy_init_rden_r <= phy_init_rden; |
---|
1535 | phy_init_rden_r1 <= phy_init_rden_r; |
---|
1536 | calib_rden_edge_r <= phy_init_rden_r & ~phy_init_rden_r1; |
---|
1537 | end |
---|
1538 | |
---|
1539 | // Calibration shift register used for both Stage 3 and Stage 4 cal |
---|
1540 | // (not strictly necessary for stage 4, but use as an additional check |
---|
1541 | // to make sure we're checking for correct data on the right clock cycle) |
---|
1542 | always @(posedge clkdiv) |
---|
1543 | if (!calib_done[2]) |
---|
1544 | calib_rden_srl_a <= cal3_rden_srl_a; |
---|
1545 | else |
---|
1546 | calib_rden_srl_a <= cal4_rden_srl_a; |
---|
1547 | |
---|
1548 | // Flops for targetting of multi-cycle path in UCF |
---|
1549 | genvar cal_rden_ff_i; |
---|
1550 | generate |
---|
1551 | for (cal_rden_ff_i = 0; cal_rden_ff_i < 5; |
---|
1552 | cal_rden_ff_i = cal_rden_ff_i+1) begin: gen_cal_rden_dly |
---|
1553 | FDRSE u_ff_cal_rden_dly |
---|
1554 | ( |
---|
1555 | .Q (calib_rden_srl_a_r[cal_rden_ff_i]), |
---|
1556 | .C (clkdiv), |
---|
1557 | .CE (1'b1), |
---|
1558 | .D (calib_rden_srl_a[cal_rden_ff_i]), |
---|
1559 | .R (1'b0), |
---|
1560 | .S (1'b0) |
---|
1561 | ) /* synthesis syn_preserve = 1 */ |
---|
1562 | /* synthesis syn_replicate = 0 */; |
---|
1563 | end |
---|
1564 | endgenerate |
---|
1565 | |
---|
1566 | SRLC32E u_calib_rden_srl |
---|
1567 | ( |
---|
1568 | .Q (calib_rden_srl_out), |
---|
1569 | .Q31 (), |
---|
1570 | .A (calib_rden_srl_a_r), |
---|
1571 | .CE (1'b1), |
---|
1572 | .CLK (clk), |
---|
1573 | .D (calib_rden_edge_r) |
---|
1574 | ); |
---|
1575 | |
---|
1576 | FDRSE u_calib_rden_srl_out_r |
---|
1577 | ( |
---|
1578 | .Q (calib_rden_srl_out_r), |
---|
1579 | .C (clk), |
---|
1580 | .CE (1'b1), |
---|
1581 | .D (calib_rden_srl_out), |
---|
1582 | .R (1'b0), |
---|
1583 | .S (1'b0) |
---|
1584 | ) /* synthesis syn_preserve = 1 */; |
---|
1585 | |
---|
1586 | // convert to CLKDIV domain. Two version are generated because we need |
---|
1587 | // to be able to tell exactly which fast (clk) clock cycle the read |
---|
1588 | // enable was asserted in. Only one of CALIB_DATA_VALID or |
---|
1589 | // CALIB_DATA_VALID_STGD will be asserted for any given shift value |
---|
1590 | always @(posedge clk) |
---|
1591 | calib_rden_srl_out_r1 <= calib_rden_srl_out_r; |
---|
1592 | |
---|
1593 | always @(posedge clkdiv) begin |
---|
1594 | calib_rden_valid <= calib_rden_srl_out_r; |
---|
1595 | calib_rden_valid_stgd <= calib_rden_srl_out_r1; |
---|
1596 | end |
---|
1597 | |
---|
1598 | //***************************************************************** |
---|
1599 | // Second set of delays chain, use for normal reads |
---|
1600 | // input = RDEN from controller |
---|
1601 | //***************************************************************** |
---|
1602 | |
---|
1603 | // Flops for targetting of multi-cycle path in UCF |
---|
1604 | genvar rden_ff_i; |
---|
1605 | generate |
---|
1606 | for (rden_ff_i = 0; rden_ff_i < 5*DQS_WIDTH; |
---|
1607 | rden_ff_i = rden_ff_i+1) begin: gen_rden_dly |
---|
1608 | FDRSE u_ff_rden_dly |
---|
1609 | ( |
---|
1610 | .Q (rden_dly_r[rden_ff_i]), |
---|
1611 | .C (clkdiv), |
---|
1612 | .CE (1'b1), |
---|
1613 | .D (rden_dly[rden_ff_i]), |
---|
1614 | .R (1'b0), |
---|
1615 | .S (1'b0) |
---|
1616 | ) /* synthesis syn_preserve = 1 */ |
---|
1617 | /* synthesis syn_replicate = 0 */; |
---|
1618 | end |
---|
1619 | endgenerate |
---|
1620 | |
---|
1621 | // NOTE: Comment this section explaining purpose of SRL's |
---|
1622 | genvar rden_i; |
---|
1623 | generate |
---|
1624 | for (rden_i = 0; rden_i < DQS_WIDTH; rden_i = rden_i + 1) begin: gen_rden |
---|
1625 | SRLC32E u_rden_srl |
---|
1626 | ( |
---|
1627 | .Q (rden_srl_out[rden_i]), |
---|
1628 | .Q31 (), |
---|
1629 | .A ({rden_dly_r[(rden_i*5)+4], |
---|
1630 | rden_dly_r[(rden_i*5)+3], |
---|
1631 | rden_dly_r[(rden_i*5)+2], |
---|
1632 | rden_dly_r[(rden_i*5)+1], |
---|
1633 | rden_dly_r[(rden_i*5)]}), |
---|
1634 | .CE (1'b1), |
---|
1635 | .CLK (clk), |
---|
1636 | .D (ctrl_rden_r) |
---|
1637 | ); |
---|
1638 | FDRSE u_calib_rden_r |
---|
1639 | ( |
---|
1640 | .Q (calib_rden[rden_i]), |
---|
1641 | .C (clk), |
---|
1642 | .CE (1'b1), |
---|
1643 | .D (rden_srl_out[rden_i]), |
---|
1644 | .R (1'b0), |
---|
1645 | .S (1'b0) |
---|
1646 | ) /* synthesis syn_preserve = 1 */; |
---|
1647 | end |
---|
1648 | endgenerate |
---|
1649 | |
---|
1650 | //***************************************************************** |
---|
1651 | // indicates that current received data is the correct pattern. Check both |
---|
1652 | // rising and falling data for first DQ in each DQS group. Note that |
---|
1653 | // we're checking using a pipelined version of read data, so need to take |
---|
1654 | // this inherent delay into account in determining final read valid delay |
---|
1655 | // Data is written to the memory in the following order (first -> last): |
---|
1656 | // 0x1, 0xE, 0xE, 0x1, 0x1, 0xE, 0x1, 0xE |
---|
1657 | // Looking at the two LSb bits, expect data in sequence (in binary): |
---|
1658 | // bit[0]: 1, 0, 0, 1, 0, 1, 0, 1 |
---|
1659 | // bit[1]: 0, 1, 1, 0, 1, 0, 1, 0 |
---|
1660 | // Check for the presence of the first 7 words, and compensate read valid |
---|
1661 | // delay accordingly. Don't check last falling edge data, it may be |
---|
1662 | // corrupted by the DQS tri-state glitch at end of read postamble |
---|
1663 | // (glitch protection not yet active until stage 4 cal) |
---|
1664 | //***************************************************************** |
---|
1665 | |
---|
1666 | always @(posedge clkdiv) begin |
---|
1667 | rdd_rise_q1_r <= rdd_rise_q1; |
---|
1668 | rdd_fall_q1_r <= rdd_fall_q1; |
---|
1669 | rdd_rise_q2_r <= rdd_rise_q2; |
---|
1670 | rdd_fall_q2_r <= rdd_fall_q2; |
---|
1671 | rdd_rise_q1_r1 <= rdd_rise_q1_r; |
---|
1672 | rdd_fall_q1_r1 <= rdd_fall_q1_r; |
---|
1673 | // MIG 3.3: Added comparison for second bit in DQS group for stage 3 cal |
---|
1674 | rdd_rise_q1_bit1_r <= rdd_rise_q1_bit1; |
---|
1675 | rdd_fall_q1_bit1_r <= rdd_fall_q1_bit1; |
---|
1676 | rdd_rise_q2_bit1_r <= rdd_rise_q2_bit1; |
---|
1677 | rdd_fall_q2_bit1_r <= rdd_fall_q2_bit1; |
---|
1678 | rdd_rise_q1_bit1_r1 <= rdd_rise_q1_bit1_r; |
---|
1679 | rdd_fall_q1_bit1_r1 <= rdd_fall_q1_bit1_r; |
---|
1680 | end |
---|
1681 | |
---|
1682 | always @(posedge clkdiv) begin |
---|
1683 | // For the following sequence from memory: |
---|
1684 | // rise[0], fall[0], rise[1], fall[1] |
---|
1685 | // if data is aligned out of fabric ISERDES: |
---|
1686 | // RDD_RISE_Q2 = rise[0] |
---|
1687 | // RDD_FALL_Q2 = fall[0] |
---|
1688 | // RDD_RISE_Q1 = rise[1] |
---|
1689 | // RDD_FALL_Q1 = fall[1] |
---|
1690 | cal3_data_match <= ((rdd_rise_q2_r == 1) && |
---|
1691 | (rdd_fall_q2_r == 0) && |
---|
1692 | (rdd_rise_q1_r == 0) && |
---|
1693 | (rdd_fall_q1_r == 1) && |
---|
1694 | (rdd_rise_q2 == 0) && |
---|
1695 | (rdd_fall_q2 == 1) && |
---|
1696 | (rdd_rise_q1 == 0) && |
---|
1697 | (rdd_rise_q2_bit1_r == 0) && |
---|
1698 | (rdd_fall_q2_bit1_r == 1) && |
---|
1699 | (rdd_rise_q1_bit1_r == 1) && |
---|
1700 | (rdd_fall_q1_bit1_r == 0) && |
---|
1701 | (rdd_rise_q2_bit1 == 1) && |
---|
1702 | (rdd_fall_q2_bit1 == 0) && |
---|
1703 | (rdd_rise_q1_bit1 == 1)); |
---|
1704 | |
---|
1705 | // if data is staggered out of fabric ISERDES: |
---|
1706 | // RDD_RISE_Q1_R = rise[0] |
---|
1707 | // RDD_FALL_Q1_R = fall[0] |
---|
1708 | // RDD_RISE_Q2 = rise[1] |
---|
1709 | // RDD_FALL_Q2 = fall[1] |
---|
1710 | cal3_data_match_stgd <= ((rdd_rise_q1_r1 == 1) && |
---|
1711 | (rdd_fall_q1_r1 == 0) && |
---|
1712 | (rdd_rise_q2_r == 0) && |
---|
1713 | (rdd_fall_q2_r == 1) && |
---|
1714 | (rdd_rise_q1_r == 0) && |
---|
1715 | (rdd_fall_q1_r == 1) && |
---|
1716 | (rdd_rise_q2 == 0) && |
---|
1717 | (rdd_rise_q1_bit1_r1 == 0) && |
---|
1718 | (rdd_fall_q1_bit1_r1 == 1) && |
---|
1719 | (rdd_rise_q2_bit1_r == 1) && |
---|
1720 | (rdd_fall_q2_bit1_r == 0) && |
---|
1721 | (rdd_rise_q1_bit1_r == 1) && |
---|
1722 | (rdd_fall_q1_bit1_r == 0) && |
---|
1723 | (rdd_rise_q2_bit1 == 1)); |
---|
1724 | end |
---|
1725 | |
---|
1726 | assign cal3_rden_dly = cal3_rden_srl_a - CAL3_RDEN_SRL_DLY_DELTA; |
---|
1727 | assign cal3_data_valid = (calib_rden_valid | calib_rden_valid_stgd); |
---|
1728 | assign cal3_match_found |
---|
1729 | = ((calib_rden_valid && cal3_data_match) || |
---|
1730 | (calib_rden_valid_stgd && cal3_data_match_stgd)); |
---|
1731 | |
---|
1732 | // when calibrating, check to see which clock cycle (after the read is |
---|
1733 | // issued) does the expected data pattern arrive. Record this result |
---|
1734 | // NOTE: Can add error checking here in case valid data not found on any |
---|
1735 | // of the available pipeline stages |
---|
1736 | always @(posedge clkdiv) begin |
---|
1737 | if (rstdiv) begin |
---|
1738 | cal3_rden_srl_a <= 5'bxxxxx; |
---|
1739 | cal3_state <= CAL3_IDLE; |
---|
1740 | calib_done[2] <= 1'b0; |
---|
1741 | calib_err_2[0] <= 1'b0; |
---|
1742 | count_rden <= {DQS_WIDTH{1'b0}}; |
---|
1743 | rden_dly <= {5*DQS_WIDTH{1'b0}}; |
---|
1744 | end else begin |
---|
1745 | |
---|
1746 | case (cal3_state) |
---|
1747 | CAL3_IDLE: begin |
---|
1748 | count_rden <= {DQS_WIDTH{1'b0}}; |
---|
1749 | if (calib_start[2]) begin |
---|
1750 | calib_done[2] <= 1'b0; |
---|
1751 | cal3_state <= CAL3_INIT; |
---|
1752 | end |
---|
1753 | end |
---|
1754 | |
---|
1755 | CAL3_INIT: begin |
---|
1756 | cal3_rden_srl_a <= RDEN_BASE_DELAY; |
---|
1757 | // let SRL pipe clear after loading initial shift value |
---|
1758 | cal3_state <= CAL3_RDEN_PIPE_CLR_WAIT; |
---|
1759 | end |
---|
1760 | |
---|
1761 | CAL3_DETECT: |
---|
1762 | if (cal3_data_valid) |
---|
1763 | // if match found at the correct clock cycle |
---|
1764 | if (cal3_match_found) begin |
---|
1765 | |
---|
1766 | // For simulation, load SRL addresses for all DQS with same value |
---|
1767 | if (SIM_ONLY != 0) begin |
---|
1768 | for (i = 0; i < DQS_WIDTH; i = i + 1) begin: loop_sim_rden_dly |
---|
1769 | rden_dly[(i*5)] <= cal3_rden_dly[0]; |
---|
1770 | rden_dly[(i*5)+1] <= cal3_rden_dly[1]; |
---|
1771 | rden_dly[(i*5)+2] <= cal3_rden_dly[2]; |
---|
1772 | rden_dly[(i*5)+3] <= cal3_rden_dly[3]; |
---|
1773 | rden_dly[(i*5)+4] <= cal3_rden_dly[4]; |
---|
1774 | end |
---|
1775 | end else begin |
---|
1776 | rden_dly[(count_rden*5)] <= cal3_rden_dly[0]; |
---|
1777 | rden_dly[(count_rden*5)+1] <= cal3_rden_dly[1]; |
---|
1778 | rden_dly[(count_rden*5)+2] <= cal3_rden_dly[2]; |
---|
1779 | rden_dly[(count_rden*5)+3] <= cal3_rden_dly[3]; |
---|
1780 | rden_dly[(count_rden*5)+4] <= cal3_rden_dly[4]; |
---|
1781 | end |
---|
1782 | |
---|
1783 | // Use for stage 4 calibration |
---|
1784 | calib_rden_dly[(count_rden*5)] <= cal3_rden_srl_a[0]; |
---|
1785 | calib_rden_dly[(count_rden*5)+1] <= cal3_rden_srl_a[1]; |
---|
1786 | calib_rden_dly[(count_rden*5)+2] <= cal3_rden_srl_a[2]; |
---|
1787 | calib_rden_dly[(count_rden*5)+3] <= cal3_rden_srl_a[3]; |
---|
1788 | calib_rden_dly[(count_rden*5)+4] <= cal3_rden_srl_a[4]; |
---|
1789 | cal3_state <= CAL3_DONE; |
---|
1790 | end else begin |
---|
1791 | // If we run out of stages to shift, without finding correct |
---|
1792 | // result, the stop and assert error |
---|
1793 | if (cal3_rden_srl_a == 5'b11111) begin |
---|
1794 | calib_err_2[0] <= 1'b1; |
---|
1795 | cal3_state <= CAL3_IDLE; |
---|
1796 | end else begin |
---|
1797 | // otherwise, increase the shift value and try again |
---|
1798 | cal3_rden_srl_a <= cal3_rden_srl_a + 1; |
---|
1799 | cal3_state <= CAL3_RDEN_PIPE_CLR_WAIT; |
---|
1800 | end |
---|
1801 | end |
---|
1802 | |
---|
1803 | // give additional time for RDEN_R pipe to clear from effects of |
---|
1804 | // previous pipeline or IDELAY tap change |
---|
1805 | CAL3_RDEN_PIPE_CLR_WAIT: |
---|
1806 | if (calib_rden_pipe_cnt == 5'b00000) |
---|
1807 | cal3_state <= CAL3_DETECT; |
---|
1808 | |
---|
1809 | CAL3_DONE: begin |
---|
1810 | if ((count_rden == DQS_WIDTH-1) || (SIM_ONLY != 0)) begin |
---|
1811 | calib_done[2] <= 1'b1; |
---|
1812 | cal3_state <= CAL3_IDLE; |
---|
1813 | end else begin |
---|
1814 | count_rden <= count_rden + 1; |
---|
1815 | cal3_state <= CAL3_INIT; |
---|
1816 | end |
---|
1817 | end |
---|
1818 | endcase |
---|
1819 | end |
---|
1820 | end |
---|
1821 | |
---|
1822 | //***************************************************************** |
---|
1823 | // Last part of stage 3 calibration - compensate for differences |
---|
1824 | // in delay between different DQS groups. Assume that in the worst |
---|
1825 | // case, DQS groups can only differ by one clock cycle. Data for |
---|
1826 | // certain DQS groups must be delayed by one clock cycle. |
---|
1827 | // NOTE: May need to increase allowable variation to greater than |
---|
1828 | // one clock cycle in certain customer designs. |
---|
1829 | // Algorithm is: |
---|
1830 | // 1. Record shift delay value for DQS[0] |
---|
1831 | // 2. Compare each DQS[x] delay value to that of DQS[0]: |
---|
1832 | // - If different, than record this fact (RDEN_MUX) |
---|
1833 | // - If greater than DQS[0], set RDEN_INC. Assume greater by |
---|
1834 | // one clock cycle only - this is a key assumption, assume no |
---|
1835 | // more than a one clock cycle variation. |
---|
1836 | // - If less than DQS[0], set RDEN_DEC |
---|
1837 | // 3. After calibration is complete, set control for DQS group |
---|
1838 | // delay (CALIB_RDEN_SEL): |
---|
1839 | // - If RDEN_DEC = 1, then assume that DQS[0] is the lowest |
---|
1840 | // delay (and at least one other DQS group has a higher |
---|
1841 | // delay). |
---|
1842 | // - If RDEN_INC = 1, then assume that DQS[0] is the highest |
---|
1843 | // delay (and that all other DQS groups have the same or |
---|
1844 | // lower delay). |
---|
1845 | // - If both RDEN_INC and RDEN_DEC = 1, then flag error |
---|
1846 | // (variation is too high for this algorithm to handle) |
---|
1847 | //***************************************************************** |
---|
1848 | |
---|
1849 | always @(posedge clkdiv) begin |
---|
1850 | if (rstdiv) begin |
---|
1851 | calib_err_2[1] <= 1'b0; |
---|
1852 | calib_rden_sel <= {DQS_WIDTH{1'bx}}; |
---|
1853 | rden_dec <= 1'b0; |
---|
1854 | rden_dly_0 <= 5'bxxxxx; |
---|
1855 | rden_inc <= 1'b0; |
---|
1856 | rden_mux <= {DQS_WIDTH{1'b0}}; |
---|
1857 | end else begin |
---|
1858 | // if a match if found, then store the value of rden_dly |
---|
1859 | if (!calib_done[2]) begin |
---|
1860 | if ((cal3_state == CAL3_DETECT) && cal3_match_found) begin |
---|
1861 | // store the value for DQS[0] as a reference |
---|
1862 | if (count_rden == 0) begin |
---|
1863 | // for simulation, RDEN calibration only happens for DQS[0] |
---|
1864 | // set RDEN_MUX for all DQS groups to be the same as DQS[0] |
---|
1865 | if (SIM_ONLY != 0) |
---|
1866 | rden_mux <= {DQS_WIDTH{1'b0}}; |
---|
1867 | else begin |
---|
1868 | // otherwise, load values for DQS[0] |
---|
1869 | rden_dly_0 <= cal3_rden_srl_a; |
---|
1870 | rden_mux[0] <= 1'b0; |
---|
1871 | end |
---|
1872 | end else if (SIM_ONLY == 0) begin |
---|
1873 | // for all other DQS groups, compare RDEN_DLY delay value with |
---|
1874 | // that of DQS[0] |
---|
1875 | if (rden_dly_0 != cal3_rden_srl_a) begin |
---|
1876 | // record that current DQS group has a different delay |
---|
1877 | // than DQS[0] (the "reference" DQS group) |
---|
1878 | rden_mux[count_rden] <= 1'b1; |
---|
1879 | if (rden_dly_0 > cal3_rden_srl_a) |
---|
1880 | rden_inc <= 1'b1; |
---|
1881 | else if (rden_dly_0 < cal3_rden_srl_a) |
---|
1882 | rden_dec <= 1'b1; |
---|
1883 | // otherwise, if current DQS group has same delay as DQS[0], |
---|
1884 | // then rden_mux[count_rden] remains at 0 (since rden_mux |
---|
1885 | // array contents initialized to 0) |
---|
1886 | end |
---|
1887 | end |
---|
1888 | end |
---|
1889 | end else begin |
---|
1890 | // Otherwise - if we're done w/ stage 2 calibration: |
---|
1891 | // set final value for RDEN data delay |
---|
1892 | // flag error if there's more than one cycle variation from DQS[0] |
---|
1893 | calib_err_2[1] <= (rden_inc && rden_dec); |
---|
1894 | if (rden_inc) |
---|
1895 | // if DQS[0] delay represents max delay |
---|
1896 | calib_rden_sel <= ~rden_mux; |
---|
1897 | else |
---|
1898 | // if DQS[0] delay represents min delay (or all the delays are |
---|
1899 | // the same between DQS groups) |
---|
1900 | calib_rden_sel <= rden_mux; |
---|
1901 | end |
---|
1902 | end |
---|
1903 | end |
---|
1904 | |
---|
1905 | // flag error for stage 3 if appropriate |
---|
1906 | always @(posedge clkdiv) |
---|
1907 | calib_err[2] <= calib_err_2[0] | calib_err_2[1]; |
---|
1908 | |
---|
1909 | //*************************************************************************** |
---|
1910 | // Stage 4 calibration: DQS gate |
---|
1911 | //*************************************************************************** |
---|
1912 | |
---|
1913 | //***************************************************************** |
---|
1914 | // indicates that current received data is the correct pattern. Same as |
---|
1915 | // for READ VALID calibration, except that the expected data sequence is |
---|
1916 | // different since DQS gate is asserted after the 6th word. |
---|
1917 | // Data sequence: |
---|
1918 | // Arrives from memory (at FPGA input) (R, F): 1 0 0 1 1 0 0 1 |
---|
1919 | // After gating the sequence looks like: 1 0 0 1 1 0 1 0 (7th word = |
---|
1920 | // 5th word, 8th word = 6th word) |
---|
1921 | // What is the gate timing is off? Need to make sure we can distinquish |
---|
1922 | // between the results of correct vs. incorrect gate timing. We also use |
---|
1923 | // the "read_valid" signal from stage 3 calibration to help us determine |
---|
1924 | // when to check for a valid sequence for stage 4 calibration (i.e. use |
---|
1925 | // CAL4_DATA_VALID in addition to CAL4_DATA_MATCH/CAL4_DATA_MATCH_STGD) |
---|
1926 | // Note that since the gate signal from the CLK0 domain is synchronized |
---|
1927 | // to the falling edge of DQS, that the effect of the gate will only be |
---|
1928 | // seen starting with a rising edge data (although it is possible |
---|
1929 | // the GATE IDDR output could go metastable and cause a unexpected result |
---|
1930 | // on the first rising and falling edges after the gate is enabled). |
---|
1931 | // Also note that the actual DQS glitch can come more than 0.5*tCK after |
---|
1932 | // the last falling edge of DQS and the constraint for this path is can |
---|
1933 | // be > 0.5*tCK; however, this means when calibrating, the output of the |
---|
1934 | // GATE IDDR may miss the setup time requirement of the rising edge flop |
---|
1935 | // and only meet it for the falling edge flop. Therefore the rising |
---|
1936 | // edge data immediately following the assertion of the gate can either |
---|
1937 | // be a 1 or 0 (can rely on either) |
---|
1938 | // As the timing on the gate is varied, we expect to see (sequence of |
---|
1939 | // captured read data shown below): |
---|
1940 | // - 1 0 0 1 1 0 0 1 (gate is really early, starts and ends before |
---|
1941 | // read burst even starts) |
---|
1942 | // - x 0 0 1 1 0 0 1 (gate pulse starts before the burst, and ends |
---|
1943 | // - x y 0 1 1 0 0 1 sometime during the burst; x,y = 0, or 1, but |
---|
1944 | // - x y x 1 1 0 0 1 all bits that show an x are the same value, |
---|
1945 | // - x y x y 1 0 0 1 and y are the same value) |
---|
1946 | // - x y x y x 0 0 1 |
---|
1947 | // - x y x y x y 0 1 (gate starts just before start of burst) |
---|
1948 | // - 1 0 x 0 x 0 x 0 (gate starts after 1st falling word. The "x" |
---|
1949 | // represents possiblity that gate may not disable |
---|
1950 | // clock for 2nd rising word in time) |
---|
1951 | // - 1 0 0 1 x 1 x 1 (gate starts after 2nd falling word) |
---|
1952 | // - 1 0 0 1 1 0 x 0 (gate starts after 3rd falling word - GOOD!!) |
---|
1953 | // - 1 0 0 1 1 0 0 1 (gate starts after burst is already done) |
---|
1954 | //***************************************************************** |
---|
1955 | |
---|
1956 | assign cal4_data_valid = calib_rden_valid | calib_rden_valid_stgd; |
---|
1957 | assign cal4_data_good = (calib_rden_valid & |
---|
1958 | cal4_data_match) | |
---|
1959 | (calib_rden_valid_stgd & |
---|
1960 | cal4_data_match_stgd); |
---|
1961 | |
---|
1962 | always @(posedge clkdiv) begin |
---|
1963 | // if data is aligned out of fabric ISERDES: |
---|
1964 | cal4_data_match <= ((rdd_rise_q2_r == 1) && |
---|
1965 | (rdd_fall_q2_r == 0) && |
---|
1966 | (rdd_rise_q1_r == 0) && |
---|
1967 | (rdd_fall_q1_r == 1) && |
---|
1968 | (rdd_rise_q2 == 1) && |
---|
1969 | (rdd_fall_q2 == 0) && |
---|
1970 | // MIG 2.1: Last rising edge data value not |
---|
1971 | // guaranteed to be certain value at higher |
---|
1972 | // frequencies |
---|
1973 | // (rdd_rise_q1 == 0) && |
---|
1974 | (rdd_fall_q1 == 0)); |
---|
1975 | // if data is staggered out of fabric ISERDES: |
---|
1976 | cal4_data_match_stgd <= ((rdd_rise_q1_r1 == 1) && |
---|
1977 | (rdd_fall_q1_r1 == 0) && |
---|
1978 | (rdd_rise_q2_r == 0) && |
---|
1979 | (rdd_fall_q2_r == 1) && |
---|
1980 | (rdd_rise_q1_r == 1) && |
---|
1981 | (rdd_fall_q1_r == 0) && |
---|
1982 | // MIG 2.1: Last rising edge data value not |
---|
1983 | // guaranteed to be certain value at higher |
---|
1984 | // frequencies |
---|
1985 | // (rdd_rise_q2 == 0) && |
---|
1986 | (rdd_fall_q2 == 0)); |
---|
1987 | end |
---|
1988 | |
---|
1989 | //***************************************************************** |
---|
1990 | // DQS gate enable generation: |
---|
1991 | // This signal gets synchronized to DQS domain, and drives IDDR |
---|
1992 | // register that in turn asserts/deasserts CE to all 4 or 8 DQ |
---|
1993 | // IDDR's in that DQS group. |
---|
1994 | // 1. During normal (post-cal) operation, this is only for 2 clock |
---|
1995 | // cycles following the end of a burst. Check for falling edge |
---|
1996 | // of RDEN. But must also make sure NOT assert for a read-idle- |
---|
1997 | // read (two non-consecutive reads, separated by exactly one |
---|
1998 | // idle cycle) - in this case, don't assert the gate because: |
---|
1999 | // (1) we don't have enough time to deassert the gate before the |
---|
2000 | // first rising edge of DQS for second burst (b/c of fact |
---|
2001 | // that DQS gate is generated in the fabric only off rising |
---|
2002 | // edge of CLK0 - if we somehow had an ODDR in fabric, we |
---|
2003 | // could pull this off, (2) assumption is that the DQS glitch |
---|
2004 | // will not rise enough to cause a glitch because the |
---|
2005 | // post-amble of the first burst is followed immediately by |
---|
2006 | // the pre-amble of the next burst |
---|
2007 | // 2. During stage 4 calibration, assert for 3 clock cycles |
---|
2008 | // (assert gate enable one clock cycle early), since we gate out |
---|
2009 | // the last two words (in addition to the crap on the DQ bus after |
---|
2010 | // the DQS read postamble). |
---|
2011 | // NOTE: PHY_INIT_RDEN and CTRL_RDEN have slightly different timing w/r |
---|
2012 | // to when they are asserted w/r to the start of the read burst |
---|
2013 | // (PHY_INIT_RDEN is one cycle earlier than CTRL_RDEN). |
---|
2014 | //***************************************************************** |
---|
2015 | |
---|
2016 | // register for timing purposes for fast clock path - currently only |
---|
2017 | // calib_done_r[2] used |
---|
2018 | always @(posedge clk) |
---|
2019 | calib_done_r <= calib_done; |
---|
2020 | |
---|
2021 | always @(*) begin |
---|
2022 | calib_ctrl_rden = ctrl_rden; |
---|
2023 | calib_init_rden = calib_done_r[2] & phy_init_rden; |
---|
2024 | end |
---|
2025 | |
---|
2026 | assign calib_ctrl_rden_negedge = ~calib_ctrl_rden & calib_ctrl_rden_r; |
---|
2027 | // check for read-idle-read before asserting DQS pulse at end of read |
---|
2028 | assign calib_ctrl_gate_pulse = calib_ctrl_rden_negedge_r & |
---|
2029 | ~calib_ctrl_rden; |
---|
2030 | always @(posedge clk) begin |
---|
2031 | calib_ctrl_rden_r <= calib_ctrl_rden; |
---|
2032 | calib_ctrl_rden_negedge_r <= calib_ctrl_rden_negedge; |
---|
2033 | calib_ctrl_gate_pulse_r <= calib_ctrl_gate_pulse; |
---|
2034 | end |
---|
2035 | |
---|
2036 | assign calib_init_gate_pulse = ~calib_init_rden & calib_init_rden_r; |
---|
2037 | always @(posedge clk) begin |
---|
2038 | calib_init_rden_r <= calib_init_rden; |
---|
2039 | calib_init_gate_pulse_r <= calib_init_gate_pulse; |
---|
2040 | calib_init_gate_pulse_r1 <= calib_init_gate_pulse_r; |
---|
2041 | end |
---|
2042 | |
---|
2043 | // Gate is asserted: (1) during cal, for 3 cycles, starting 1 cycle |
---|
2044 | // after falling edge of CTRL_RDEN, (2) during normal ops, for 2 |
---|
2045 | // cycles, starting 2 cycles after falling edge of CTRL_RDEN |
---|
2046 | assign gate_srl_in = ~((calib_ctrl_gate_pulse | |
---|
2047 | calib_ctrl_gate_pulse_r) | |
---|
2048 | (calib_init_gate_pulse | |
---|
2049 | calib_init_gate_pulse_r | |
---|
2050 | calib_init_gate_pulse_r1)); |
---|
2051 | |
---|
2052 | //***************************************************************** |
---|
2053 | // generate DQS enable signal for each DQS group |
---|
2054 | // There are differences between DQS gate signal for calibration vs. during |
---|
2055 | // normal operation: |
---|
2056 | // * calibration gates the second to last clock cycle of the burst, |
---|
2057 | // rather than after the last word (e.g. for a 8-word, 4-cycle burst, |
---|
2058 | // cycle 4 is gated for calibration; during normal operation, cycle |
---|
2059 | // 5 (i.e. cycle after the last word) is gated) |
---|
2060 | // enable for DQS is deasserted for two clock cycles, except when |
---|
2061 | // we have the preamble for the next read immediately following |
---|
2062 | // the postamble of the current read - assume DQS does not glitch |
---|
2063 | // during this time, that it stays low. Also if we did have to gate |
---|
2064 | // the DQS for this case, then we don't have enough time to deassert |
---|
2065 | // the gate in time for the first rising edge of DQS for the second |
---|
2066 | // read |
---|
2067 | //***************************************************************** |
---|
2068 | |
---|
2069 | // Flops for targetting of multi-cycle path in UCF |
---|
2070 | genvar gate_ff_i; |
---|
2071 | generate |
---|
2072 | for (gate_ff_i = 0; gate_ff_i < 5*DQS_WIDTH; |
---|
2073 | gate_ff_i = gate_ff_i+1) begin: gen_gate_dly |
---|
2074 | FDRSE u_ff_gate_dly |
---|
2075 | ( |
---|
2076 | .Q (gate_dly_r[gate_ff_i]), |
---|
2077 | .C (clkdiv), |
---|
2078 | .CE (1'b1), |
---|
2079 | .D (gate_dly[gate_ff_i]), |
---|
2080 | .R (1'b0), |
---|
2081 | .S (1'b0) |
---|
2082 | ) /* synthesis syn_preserve = 1 */ |
---|
2083 | /* synthesis syn_replicate = 0 */; |
---|
2084 | end |
---|
2085 | endgenerate |
---|
2086 | |
---|
2087 | genvar gate_i; |
---|
2088 | generate |
---|
2089 | for (gate_i = 0; gate_i < DQS_WIDTH; gate_i = gate_i + 1) begin: gen_gate |
---|
2090 | SRLC32E u_gate_srl |
---|
2091 | ( |
---|
2092 | .Q (gate_srl_out[gate_i]), |
---|
2093 | .Q31 (), |
---|
2094 | .A ({gate_dly_r[(gate_i*5)+4], |
---|
2095 | gate_dly_r[(gate_i*5)+3], |
---|
2096 | gate_dly_r[(gate_i*5)+2], |
---|
2097 | gate_dly_r[(gate_i*5)+1], |
---|
2098 | gate_dly_r[(gate_i*5)]}), |
---|
2099 | .CE (1'b1), |
---|
2100 | .CLK (clk), |
---|
2101 | .D (gate_srl_in) |
---|
2102 | ); |
---|
2103 | |
---|
2104 | // For GATE_BASE_DELAY > 0, have one extra cycle to register outputs |
---|
2105 | // from controller before generating DQS gate pulse. In PAR, the |
---|
2106 | // location of the controller logic can be far from the DQS gate |
---|
2107 | // logic (DQS gate logic located near the DQS I/O's), contributing |
---|
2108 | // to large net delays. Registering the controller outputs for |
---|
2109 | // CL >= 4 (above 200MHz) adds a stage of pipelining to reduce net |
---|
2110 | // delays |
---|
2111 | if (GATE_BASE_DELAY > 0) begin: gen_gate_base_dly_gt3 |
---|
2112 | // add flop between SRL32 and EN_DQS flop (which is located near the |
---|
2113 | // DDR2 IOB's) |
---|
2114 | FDRSE u_gate_srl_ff |
---|
2115 | ( |
---|
2116 | .Q (gate_srl_out_r[gate_i]), |
---|
2117 | .C (clk), |
---|
2118 | .CE (1'b1), |
---|
2119 | .D (gate_srl_out[gate_i]), |
---|
2120 | .R (1'b0), |
---|
2121 | .S (1'b0) |
---|
2122 | ) /* synthesis syn_preserve = 1 */; |
---|
2123 | end else begin: gen_gate_base_dly_le3 |
---|
2124 | assign gate_srl_out_r[gate_i] = gate_srl_out[gate_i]; |
---|
2125 | end |
---|
2126 | |
---|
2127 | FDRSE u_en_dqs_ff |
---|
2128 | ( |
---|
2129 | .Q (en_dqs[gate_i]), |
---|
2130 | .C (clk), |
---|
2131 | .CE (1'b1), |
---|
2132 | .D (gate_srl_out_r[gate_i]), |
---|
2133 | .R (1'b0), |
---|
2134 | .S (1'b0) |
---|
2135 | ) /* synthesis syn_preserve = 1 */ |
---|
2136 | /* synthesis syn_replicate = 0 */; |
---|
2137 | end |
---|
2138 | endgenerate |
---|
2139 | |
---|
2140 | //***************************************************************** |
---|
2141 | // Find valid window: keep track of how long we've been in the same data |
---|
2142 | // window. If it's been long enough, then declare that we've found a stable |
---|
2143 | // valid window - in particular, that we're past any region of instability |
---|
2144 | // associated with the edge of the window. Use only when finding left edge |
---|
2145 | //***************************************************************** |
---|
2146 | |
---|
2147 | always @(posedge clkdiv) |
---|
2148 | // reset before we start to look for window |
---|
2149 | if (cal4_state == CAL4_INIT) begin |
---|
2150 | cal4_window_cnt <= 4'b0000; |
---|
2151 | cal4_stable_window <= 1'b0; |
---|
2152 | end else if ((cal4_state == CAL4_FIND_EDGE) && cal4_seek_left) begin |
---|
2153 | // if we're looking for left edge, and incrementing IDELAY, count |
---|
2154 | // consecutive taps over which we're in the window |
---|
2155 | if (cal4_data_valid) begin |
---|
2156 | if (cal4_data_good) |
---|
2157 | cal4_window_cnt <= cal4_window_cnt + 1; |
---|
2158 | else |
---|
2159 | cal4_window_cnt <= 4'b0000; |
---|
2160 | end |
---|
2161 | |
---|
2162 | if (cal4_window_cnt == MIN_WIN_SIZE-1) |
---|
2163 | cal4_stable_window <= 1'b1; |
---|
2164 | end |
---|
2165 | |
---|
2166 | //***************************************************************** |
---|
2167 | // keep track of edge tap counts found, and whether we've |
---|
2168 | // incremented to the maximum number of taps allowed |
---|
2169 | //***************************************************************** |
---|
2170 | |
---|
2171 | always @(posedge clkdiv) |
---|
2172 | if ((cal4_state == CAL4_INIT) || cal4_dlyrst_gate) begin |
---|
2173 | cal4_idel_max_tap <= 1'b0; |
---|
2174 | cal4_idel_bit_tap <= 1'b0; |
---|
2175 | cal4_idel_tap_cnt <= 6'b000000; |
---|
2176 | end else if (cal4_dlyce_gate) begin |
---|
2177 | if (cal4_dlyinc_gate) begin |
---|
2178 | cal4_idel_tap_cnt <= cal4_idel_tap_cnt + 1; |
---|
2179 | cal4_idel_bit_tap <= (cal4_idel_tap_cnt == CAL4_IDEL_BIT_VAL-2); |
---|
2180 | cal4_idel_max_tap <= (cal4_idel_tap_cnt == 6'b111110); |
---|
2181 | end else begin |
---|
2182 | cal4_idel_tap_cnt <= cal4_idel_tap_cnt - 1; |
---|
2183 | cal4_idel_bit_tap <= 1'b0; |
---|
2184 | cal4_idel_max_tap <= 1'b0; |
---|
2185 | end |
---|
2186 | end |
---|
2187 | |
---|
2188 | always @(posedge clkdiv) |
---|
2189 | if ((cal4_state != CAL4_RDEN_PIPE_CLR_WAIT) && |
---|
2190 | (cal3_state != CAL3_RDEN_PIPE_CLR_WAIT)) |
---|
2191 | calib_rden_pipe_cnt <= CALIB_RDEN_PIPE_LEN-1; |
---|
2192 | else |
---|
2193 | calib_rden_pipe_cnt <= calib_rden_pipe_cnt - 1; |
---|
2194 | |
---|
2195 | //***************************************************************** |
---|
2196 | // Stage 4 cal state machine |
---|
2197 | //***************************************************************** |
---|
2198 | |
---|
2199 | always @(posedge clkdiv) |
---|
2200 | if (rstdiv) begin |
---|
2201 | calib_done[3] <= 1'b0; |
---|
2202 | calib_done_tmp[3] <= 1'b0; |
---|
2203 | calib_err[3] <= 1'b0; |
---|
2204 | count_gate <= 'b0; |
---|
2205 | gate_dly <= 'b0; |
---|
2206 | next_count_gate <= 'b0; |
---|
2207 | cal4_idel_adj_cnt <= 6'bxxxxxx; |
---|
2208 | cal4_dlyce_gate <= 1'b0; |
---|
2209 | cal4_dlyinc_gate <= 1'b0; |
---|
2210 | cal4_dlyrst_gate <= 1'b0; // reset handled elsewhere in code |
---|
2211 | cal4_gate_srl_a <= 5'bxxxxx; |
---|
2212 | cal4_rden_srl_a <= 5'bxxxxx; |
---|
2213 | cal4_ref_req <= 1'b0; |
---|
2214 | cal4_seek_left <= 1'bx; |
---|
2215 | cal4_state <= CAL4_IDLE; |
---|
2216 | end else begin |
---|
2217 | cal4_ref_req <= 1'b0; |
---|
2218 | cal4_dlyce_gate <= 1'b0; |
---|
2219 | cal4_dlyinc_gate <= 1'b0; |
---|
2220 | cal4_dlyrst_gate <= 1'b0; |
---|
2221 | |
---|
2222 | case (cal4_state) |
---|
2223 | CAL4_IDLE: begin |
---|
2224 | count_gate <= 'b0; |
---|
2225 | next_count_gate <= 'b0; |
---|
2226 | if (calib_start[3]) begin |
---|
2227 | gate_dly <= 'b0; |
---|
2228 | calib_done[3] <= 1'b0; |
---|
2229 | cal4_state <= CAL4_INIT; |
---|
2230 | end |
---|
2231 | end |
---|
2232 | |
---|
2233 | CAL4_INIT: begin |
---|
2234 | // load: (1) initial value of gate delay SRL, (2) appropriate |
---|
2235 | // value of RDEN SRL (so that we get correct "data valid" timing) |
---|
2236 | cal4_gate_srl_a <= GATE_BASE_INIT; |
---|
2237 | cal4_rden_srl_a <= {calib_rden_dly[(count_gate*5)+4], |
---|
2238 | calib_rden_dly[(count_gate*5)+3], |
---|
2239 | calib_rden_dly[(count_gate*5)+2], |
---|
2240 | calib_rden_dly[(count_gate*5)+1], |
---|
2241 | calib_rden_dly[(count_gate*5)]}; |
---|
2242 | // let SRL pipe clear after loading initial shift value |
---|
2243 | cal4_state <= CAL4_RDEN_PIPE_CLR_WAIT; |
---|
2244 | end |
---|
2245 | |
---|
2246 | // sort of an initial state - start checking to see whether we're |
---|
2247 | // already in the window or not |
---|
2248 | CAL4_FIND_WINDOW: |
---|
2249 | // decide right away if we start in the proper window - this |
---|
2250 | // determines if we are then looking for the left (trailing) or |
---|
2251 | // right (leading) edge of the data valid window |
---|
2252 | if (cal4_data_valid) begin |
---|
2253 | // if we find a match - then we're already in window, now look |
---|
2254 | // for left edge. Otherwise, look for right edge of window |
---|
2255 | cal4_seek_left <= cal4_data_good; |
---|
2256 | cal4_state <= CAL4_FIND_EDGE; |
---|
2257 | end |
---|
2258 | |
---|
2259 | CAL4_FIND_EDGE: |
---|
2260 | // don't do anything until the exact clock cycle when to check that |
---|
2261 | // readback data is valid or not |
---|
2262 | if (cal4_data_valid) begin |
---|
2263 | // we're currently in the window, look for left edge of window |
---|
2264 | if (cal4_seek_left) begin |
---|
2265 | // make sure we've passed the right edge before trying to detect |
---|
2266 | // the left edge (i.e. avoid any edge "instability") - else, we |
---|
2267 | // may detect an "false" edge too soon. By design, if we start in |
---|
2268 | // the data valid window, always expect at least |
---|
2269 | // MIN(BIT_TIME_TAPS,32) (-/+ jitter, see below) taps of valid |
---|
2270 | // window before we hit the left edge (this is because when stage |
---|
2271 | // 4 calibration first begins (i.e., gate_dly = 00, and IDELAY = |
---|
2272 | // 00), we're guaranteed to NOT be in the window, and we always |
---|
2273 | // start searching for MIN(BIT_TIME_TAPS,32) for the right edge |
---|
2274 | // of window. If we don't find it, increment gate_dly, and if we |
---|
2275 | // now start in the window, we have at least approximately |
---|
2276 | // CLK_PERIOD-MIN(BIT_TIME_TAPS,32) = MIN(BIT_TIME_TAPS,32) taps. |
---|
2277 | // It's approximately because jitter, noise, etc. can bring this |
---|
2278 | // value down slightly. Because of this (although VERY UNLIKELY), |
---|
2279 | // we have to protect against not decrementing IDELAY below 0 |
---|
2280 | // during adjustment phase). |
---|
2281 | if (cal4_stable_window && !cal4_data_good) begin |
---|
2282 | // found left edge of window, dec by MIN(BIT_TIME_TAPS,32) |
---|
2283 | cal4_idel_adj_cnt <= CAL4_IDEL_BIT_VAL; |
---|
2284 | cal4_idel_adj_inc <= 1'b0; |
---|
2285 | cal4_state <= CAL4_ADJ_IDEL; |
---|
2286 | end else begin |
---|
2287 | // Otherwise, keep looking for left edge: |
---|
2288 | if (cal4_idel_max_tap) begin |
---|
2289 | // ran out of taps looking for left edge (max=63) - happens |
---|
2290 | // for low frequency case, decrement by 32 |
---|
2291 | cal4_idel_adj_cnt <= 6'b100000; |
---|
2292 | cal4_idel_adj_inc <= 1'b0; |
---|
2293 | cal4_state <= CAL4_ADJ_IDEL; |
---|
2294 | end else begin |
---|
2295 | cal4_dlyce_gate <= 1'b1; |
---|
2296 | cal4_dlyinc_gate <= 1'b1; |
---|
2297 | cal4_state <= CAL4_IDEL_WAIT; |
---|
2298 | end |
---|
2299 | end |
---|
2300 | end else begin |
---|
2301 | // looking for right edge of window: |
---|
2302 | // look for the first match - this means we've found the right |
---|
2303 | // (leading) edge of the data valid window, increment by |
---|
2304 | // MIN(BIT_TIME_TAPS,32) |
---|
2305 | if (cal4_data_good) begin |
---|
2306 | cal4_idel_adj_cnt <= CAL4_IDEL_BIT_VAL; |
---|
2307 | cal4_idel_adj_inc <= 1'b1; |
---|
2308 | cal4_state <= CAL4_ADJ_IDEL; |
---|
2309 | end else begin |
---|
2310 | // Otherwise, keep looking: |
---|
2311 | // only look for MIN(BIT_TIME_TAPS,32) taps for right edge, |
---|
2312 | // if we haven't found it, then inc gate delay, try again |
---|
2313 | if (cal4_idel_bit_tap) begin |
---|
2314 | // if we're already maxed out on gate delay, then error out |
---|
2315 | // (simulation only - calib_err isn't currently connected) |
---|
2316 | if (cal4_gate_srl_a == 5'b11111) begin |
---|
2317 | calib_err[3] <= 1'b1; |
---|
2318 | cal4_state <= CAL4_IDLE; |
---|
2319 | end else begin |
---|
2320 | // otherwise, increment gate delay count, and start |
---|
2321 | // over again |
---|
2322 | cal4_gate_srl_a <= cal4_gate_srl_a + 1; |
---|
2323 | cal4_dlyrst_gate <= 1'b1; |
---|
2324 | cal4_state <= CAL4_RDEN_PIPE_CLR_WAIT; |
---|
2325 | end |
---|
2326 | end else begin |
---|
2327 | // keep looking for right edge |
---|
2328 | cal4_dlyce_gate <= 1'b1; |
---|
2329 | cal4_dlyinc_gate <= 1'b1; |
---|
2330 | cal4_state <= CAL4_IDEL_WAIT; |
---|
2331 | end |
---|
2332 | end |
---|
2333 | end |
---|
2334 | end |
---|
2335 | |
---|
2336 | // wait for GATE IDELAY to settle, after reset or increment |
---|
2337 | CAL4_IDEL_WAIT: begin |
---|
2338 | // For simulation, load SRL addresses for all DQS with same value |
---|
2339 | if (SIM_ONLY != 0) begin |
---|
2340 | for (i = 0; i < DQS_WIDTH; i = i + 1) begin: loop_sim_gate_dly |
---|
2341 | gate_dly[(i*5)+4] <= cal4_gate_srl_a[4]; |
---|
2342 | gate_dly[(i*5)+3] <= cal4_gate_srl_a[3]; |
---|
2343 | gate_dly[(i*5)+2] <= cal4_gate_srl_a[2]; |
---|
2344 | gate_dly[(i*5)+1] <= cal4_gate_srl_a[1]; |
---|
2345 | gate_dly[(i*5)] <= cal4_gate_srl_a[0]; |
---|
2346 | end |
---|
2347 | end else begin |
---|
2348 | gate_dly[(count_gate*5)+4] <= cal4_gate_srl_a[4]; |
---|
2349 | gate_dly[(count_gate*5)+3] <= cal4_gate_srl_a[3]; |
---|
2350 | gate_dly[(count_gate*5)+2] <= cal4_gate_srl_a[2]; |
---|
2351 | gate_dly[(count_gate*5)+1] <= cal4_gate_srl_a[1]; |
---|
2352 | gate_dly[(count_gate*5)] <= cal4_gate_srl_a[0]; |
---|
2353 | end |
---|
2354 | // check to see if we've found edge of window |
---|
2355 | if (!idel_set_wait) |
---|
2356 | cal4_state <= CAL4_FIND_EDGE; |
---|
2357 | end |
---|
2358 | |
---|
2359 | // give additional time for RDEN_R pipe to clear from effects of |
---|
2360 | // previous pipeline (and IDELAY reset) |
---|
2361 | CAL4_RDEN_PIPE_CLR_WAIT: begin |
---|
2362 | // MIG 2.2: Bug fix - make sure to update GATE_DLY count, since |
---|
2363 | // possible for FIND_EDGE->RDEN_PIPE_CLR_WAIT->FIND_WINDOW |
---|
2364 | // transition (i.e. need to make sure the gate count updated in |
---|
2365 | // FIND_EDGE gets reflected in GATE_DLY by the time we reach |
---|
2366 | // state FIND_WINDOW) - previously GATE_DLY only being updated |
---|
2367 | // during state CAL4_IDEL_WAIT |
---|
2368 | if (SIM_ONLY != 0) begin |
---|
2369 | for (i = 0; i < DQS_WIDTH; i = i + 1) begin: loop_sim_gate_dly_pipe |
---|
2370 | gate_dly[(i*5)+4] <= cal4_gate_srl_a[4]; |
---|
2371 | gate_dly[(i*5)+3] <= cal4_gate_srl_a[3]; |
---|
2372 | gate_dly[(i*5)+2] <= cal4_gate_srl_a[2]; |
---|
2373 | gate_dly[(i*5)+1] <= cal4_gate_srl_a[1]; |
---|
2374 | gate_dly[(i*5)] <= cal4_gate_srl_a[0]; |
---|
2375 | end |
---|
2376 | end else begin |
---|
2377 | gate_dly[(count_gate*5)+4] <= cal4_gate_srl_a[4]; |
---|
2378 | gate_dly[(count_gate*5)+3] <= cal4_gate_srl_a[3]; |
---|
2379 | gate_dly[(count_gate*5)+2] <= cal4_gate_srl_a[2]; |
---|
2380 | gate_dly[(count_gate*5)+1] <= cal4_gate_srl_a[1]; |
---|
2381 | gate_dly[(count_gate*5)] <= cal4_gate_srl_a[0]; |
---|
2382 | end |
---|
2383 | // look for new window |
---|
2384 | if (calib_rden_pipe_cnt == 5'b00000) |
---|
2385 | cal4_state <= CAL4_FIND_WINDOW; |
---|
2386 | end |
---|
2387 | |
---|
2388 | // increment/decrement DQS/DQ IDELAY for final adjustment |
---|
2389 | CAL4_ADJ_IDEL: |
---|
2390 | // add underflow protection for corner case when left edge found |
---|
2391 | // using fewer than MIN(BIT_TIME_TAPS,32) taps |
---|
2392 | if ((cal4_idel_adj_cnt == 6'b000000) || |
---|
2393 | (cal4_dlyce_gate && !cal4_dlyinc_gate && |
---|
2394 | (cal4_idel_tap_cnt == 6'b000001))) begin |
---|
2395 | cal4_state <= CAL4_DONE; |
---|
2396 | // stop when all gates calibrated, or gate[0] cal'ed (for sim) |
---|
2397 | if ((count_gate == DQS_WIDTH-1) || (SIM_ONLY != 0)) |
---|
2398 | calib_done_tmp[3] <= 1'b1; |
---|
2399 | else |
---|
2400 | // need for VHDL simulation to prevent out-of-index error |
---|
2401 | next_count_gate <= count_gate + 1; |
---|
2402 | end else begin |
---|
2403 | cal4_idel_adj_cnt <= cal4_idel_adj_cnt - 1; |
---|
2404 | cal4_dlyce_gate <= 1'b1; |
---|
2405 | // whether inc or dec depends on whether left or right edge found |
---|
2406 | cal4_dlyinc_gate <= cal4_idel_adj_inc; |
---|
2407 | end |
---|
2408 | |
---|
2409 | // wait for IDELAY output to settle after decrement. Check current |
---|
2410 | // COUNT_GATE value and decide if we're done |
---|
2411 | CAL4_DONE: |
---|
2412 | if (!idel_set_wait) begin |
---|
2413 | count_gate <= next_count_gate; |
---|
2414 | if (calib_done_tmp[3]) begin |
---|
2415 | calib_done[3] <= 1'b1; |
---|
2416 | cal4_state <= CAL4_IDLE; |
---|
2417 | end else begin |
---|
2418 | // request auto-refresh after every DQS group calibrated to |
---|
2419 | // avoid tRAS violation |
---|
2420 | cal4_ref_req <= 1'b1; |
---|
2421 | if (calib_ref_done) |
---|
2422 | cal4_state <= CAL4_INIT; |
---|
2423 | end |
---|
2424 | end |
---|
2425 | endcase |
---|
2426 | end |
---|
2427 | |
---|
2428 | endmodule |
---|