[10] | 1 | //***************************************************************************** |
---|
| 2 | // DISCLAIMER OF LIABILITY |
---|
| 3 | // |
---|
| 4 | // This file contains proprietary and confidential information of |
---|
| 5 | // Xilinx, Inc. ("Xilinx"), that is distributed under a license |
---|
| 6 | // from Xilinx, and may be used, copied and/or disclosed only |
---|
| 7 | // pursuant to the terms of a valid license agreement with Xilinx. |
---|
| 8 | // |
---|
| 9 | // XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION |
---|
| 10 | // ("MATERIALS") "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER |
---|
| 11 | // EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING WITHOUT |
---|
| 12 | // LIMITATION, ANY WARRANTY WITH RESPECT TO NONINFRINGEMENT, |
---|
| 13 | // MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. Xilinx |
---|
| 14 | // does not warrant that functions included in the Materials will |
---|
| 15 | // meet the requirements of Licensee, or that the operation of the |
---|
| 16 | // Materials will be uninterrupted or error-free, or that defects |
---|
| 17 | // in the Materials will be corrected. Furthermore, Xilinx does |
---|
| 18 | // not warrant or make any representations regarding use, or the |
---|
| 19 | // results of the use, of the Materials in terms of correctness, |
---|
| 20 | // accuracy, reliability or otherwise. |
---|
| 21 | // |
---|
| 22 | // Xilinx products are not designed or intended to be fail-safe, |
---|
| 23 | // or for use in any application requiring fail-safe performance, |
---|
| 24 | // such as life-support or safety devices or systems, Class III |
---|
| 25 | // medical devices, nuclear facilities, applications related to |
---|
| 26 | // the deployment of airbags, or any other applications that could |
---|
| 27 | // lead to death, personal injury or severe property or |
---|
| 28 | // environmental damage (individually and collectively, "critical |
---|
| 29 | // applications"). Customer assumes the sole risk and liability |
---|
| 30 | // of any use of Xilinx products in critical applications, |
---|
| 31 | // subject only to applicable laws and regulations governing |
---|
| 32 | // limitations on product liability. |
---|
| 33 | // |
---|
| 34 | // Copyright 2006, 2007, 2008 Xilinx, Inc. |
---|
| 35 | // All rights reserved. |
---|
| 36 | // |
---|
| 37 | // This disclaimer and copyright notice must be retained as part |
---|
| 38 | // of this file at all times. |
---|
| 39 | //***************************************************************************** |
---|
| 40 | // ____ ____ |
---|
| 41 | // / /\/ / |
---|
| 42 | // /___/ \ / Vendor: Xilinx |
---|
| 43 | // \ \ \/ Version: 3.6 |
---|
| 44 | // \ \ Application: MIG |
---|
| 45 | // / / Filename: ddr2_usr_rd.v |
---|
| 46 | // /___/ /\ Date Last Modified: $Date: 2010/06/29 12:03:43 $ |
---|
| 47 | // \ \ / \ Date Created: Tue Aug 29 2006 |
---|
| 48 | // \___\/\___\ |
---|
| 49 | // |
---|
| 50 | //Device: Virtex-5 |
---|
| 51 | //Design Name: DDR2 |
---|
| 52 | //Purpose: |
---|
| 53 | // The delay between the read data with respect to the command issued is |
---|
| 54 | // calculted in terms of no. of clocks. This data is then stored into the |
---|
| 55 | // FIFOs and then read back and given as the ouput for comparison. |
---|
| 56 | //Reference: |
---|
| 57 | //Revision History: |
---|
| 58 | //***************************************************************************** |
---|
| 59 | |
---|
| 60 | `timescale 1ns/1ps |
---|
| 61 | |
---|
| 62 | module ddr2_usr_rd # |
---|
| 63 | ( |
---|
| 64 | // Following parameters are for 72-bit RDIMM design (for ML561 Reference |
---|
| 65 | // board design). Actual values may be different. Actual parameters values |
---|
| 66 | // are passed from design top module dram module. Please refer to |
---|
| 67 | // the dram module for actual values. |
---|
| 68 | parameter DQ_PER_DQS = 8, |
---|
| 69 | parameter DQS_WIDTH = 9, |
---|
| 70 | parameter APPDATA_WIDTH = 144, |
---|
| 71 | parameter ECC_WIDTH = 72, |
---|
| 72 | parameter ECC_ENABLE = 0 |
---|
| 73 | ) |
---|
| 74 | ( |
---|
| 75 | input clk0, |
---|
| 76 | input rst0, |
---|
| 77 | input [(DQS_WIDTH*DQ_PER_DQS)-1:0] rd_data_in_rise, |
---|
| 78 | input [(DQS_WIDTH*DQ_PER_DQS)-1:0] rd_data_in_fall, |
---|
| 79 | input [DQS_WIDTH-1:0] ctrl_rden, |
---|
| 80 | input [DQS_WIDTH-1:0] ctrl_rden_sel, |
---|
| 81 | output reg [1:0] rd_ecc_error, |
---|
| 82 | output rd_data_valid, |
---|
| 83 | output reg [(APPDATA_WIDTH/2)-1:0] rd_data_out_rise, |
---|
| 84 | output reg [(APPDATA_WIDTH/2)-1:0] rd_data_out_fall |
---|
| 85 | ); |
---|
| 86 | |
---|
| 87 | // determine number of FIFO72's to use based on data width |
---|
| 88 | localparam RDF_FIFO_NUM = ((APPDATA_WIDTH/2)+63)/64; |
---|
| 89 | |
---|
| 90 | reg [DQS_WIDTH-1:0] ctrl_rden_r; |
---|
| 91 | wire [(DQS_WIDTH*DQ_PER_DQS)-1:0] fall_data; |
---|
| 92 | reg [(DQS_WIDTH*DQ_PER_DQS)-1:0] rd_data_in_fall_r; |
---|
| 93 | reg [(DQS_WIDTH*DQ_PER_DQS)-1:0] rd_data_in_rise_r; |
---|
| 94 | wire rden; |
---|
| 95 | reg [DQS_WIDTH-1:0] rden_sel_r |
---|
| 96 | /* synthesis syn_preserve=1 */; |
---|
| 97 | wire [DQS_WIDTH-1:0] rden_sel_mux; |
---|
| 98 | wire [(DQS_WIDTH*DQ_PER_DQS)-1:0] rise_data; |
---|
| 99 | |
---|
| 100 | // ECC specific signals |
---|
| 101 | wire [((RDF_FIFO_NUM -1) *2)+1:0] db_ecc_error; |
---|
| 102 | reg [(DQS_WIDTH*DQ_PER_DQS)-1:0] fall_data_r; |
---|
| 103 | reg fifo_rden_r0; |
---|
| 104 | reg fifo_rden_r1; |
---|
| 105 | reg fifo_rden_r2; |
---|
| 106 | reg fifo_rden_r3; |
---|
| 107 | reg fifo_rden_r4; |
---|
| 108 | reg fifo_rden_r5; |
---|
| 109 | reg fifo_rden_r6; |
---|
| 110 | wire [(APPDATA_WIDTH/2)-1:0] rd_data_out_fall_temp; |
---|
| 111 | wire [(APPDATA_WIDTH/2)-1:0] rd_data_out_rise_temp; |
---|
| 112 | reg rst_r; |
---|
| 113 | reg [(DQS_WIDTH*DQ_PER_DQS)-1:0] rise_data_r; |
---|
| 114 | wire [((RDF_FIFO_NUM -1) *2)+1:0] sb_ecc_error; |
---|
| 115 | |
---|
| 116 | |
---|
| 117 | //*************************************************************************** |
---|
| 118 | |
---|
| 119 | always @(posedge clk0) begin |
---|
| 120 | rden_sel_r <= ctrl_rden_sel; |
---|
| 121 | ctrl_rden_r <= ctrl_rden; |
---|
| 122 | rd_data_in_rise_r <= rd_data_in_rise; |
---|
| 123 | rd_data_in_fall_r <= rd_data_in_fall; |
---|
| 124 | end |
---|
| 125 | |
---|
| 126 | // Instantiate primitive to allow this flop to be attached to multicycle |
---|
| 127 | // path constraint in UCF. Multicycle path allowed for data from read FIFO. |
---|
| 128 | // This is the same signal as RDEN_SEL_R, but is only used to select data |
---|
| 129 | // (does not affect control signals) |
---|
| 130 | genvar rd_i; |
---|
| 131 | generate |
---|
| 132 | for (rd_i = 0; rd_i < DQS_WIDTH; rd_i = rd_i+1) begin: gen_rden_sel_mux |
---|
| 133 | FDRSE u_ff_rden_sel_mux |
---|
| 134 | ( |
---|
| 135 | .Q (rden_sel_mux[rd_i]), |
---|
| 136 | .C (clk0), |
---|
| 137 | .CE (1'b1), |
---|
| 138 | .D (ctrl_rden_sel[rd_i]), |
---|
| 139 | .R (1'b0), |
---|
| 140 | .S (1'b0) |
---|
| 141 | ) /* synthesis syn_preserve=1 */; |
---|
| 142 | end |
---|
| 143 | endgenerate |
---|
| 144 | |
---|
| 145 | // determine correct read data valid signal timing |
---|
| 146 | assign rden = (rden_sel_r[0]) ? ctrl_rden[0] : ctrl_rden_r[0]; |
---|
| 147 | |
---|
| 148 | // assign data based on the skew |
---|
| 149 | genvar data_i; |
---|
| 150 | generate |
---|
| 151 | for(data_i = 0; data_i < DQS_WIDTH; data_i = data_i+1) begin: gen_data |
---|
| 152 | assign rise_data[(data_i*DQ_PER_DQS)+(DQ_PER_DQS-1): |
---|
| 153 | (data_i*DQ_PER_DQS)] |
---|
| 154 | = (rden_sel_mux[data_i]) ? |
---|
| 155 | rd_data_in_rise[(data_i*DQ_PER_DQS)+(DQ_PER_DQS-1) : |
---|
| 156 | (data_i*DQ_PER_DQS)] : |
---|
| 157 | rd_data_in_rise_r[(data_i*DQ_PER_DQS)+(DQ_PER_DQS-1): |
---|
| 158 | (data_i*DQ_PER_DQS)]; |
---|
| 159 | assign fall_data[(data_i*DQ_PER_DQS)+(DQ_PER_DQS-1): |
---|
| 160 | (data_i*DQ_PER_DQS)] |
---|
| 161 | = (rden_sel_mux[data_i]) ? |
---|
| 162 | rd_data_in_fall[(data_i*DQ_PER_DQS)+(DQ_PER_DQS-1): |
---|
| 163 | (data_i*DQ_PER_DQS)] : |
---|
| 164 | rd_data_in_fall_r[(data_i*DQ_PER_DQS)+(DQ_PER_DQS-1): |
---|
| 165 | (data_i*DQ_PER_DQS)]; |
---|
| 166 | end |
---|
| 167 | endgenerate |
---|
| 168 | |
---|
| 169 | // Generate RST for FIFO reset AND for read/write enable: |
---|
| 170 | // ECC FIFO always being read from and written to |
---|
| 171 | always @(posedge clk0) |
---|
| 172 | rst_r <= rst0; |
---|
| 173 | |
---|
| 174 | genvar rdf_i; |
---|
| 175 | generate |
---|
| 176 | if (ECC_ENABLE) begin |
---|
| 177 | always @(posedge clk0) begin |
---|
| 178 | rd_ecc_error[0] <= (|sb_ecc_error) & fifo_rden_r5; |
---|
| 179 | rd_ecc_error[1] <= (|db_ecc_error) & fifo_rden_r5; |
---|
| 180 | rd_data_out_rise <= rd_data_out_rise_temp; |
---|
| 181 | rd_data_out_fall <= rd_data_out_fall_temp; |
---|
| 182 | rise_data_r <= rise_data; |
---|
| 183 | fall_data_r <= fall_data; |
---|
| 184 | end |
---|
| 185 | |
---|
| 186 | // can use any of the read valids, they're all delayed by same amount |
---|
| 187 | assign rd_data_valid = fifo_rden_r6; |
---|
| 188 | |
---|
| 189 | // delay read valid to take into account max delay difference btw |
---|
| 190 | // the read enable coming from the different DQS groups |
---|
| 191 | always @(posedge clk0) begin |
---|
| 192 | if (rst0) begin |
---|
| 193 | fifo_rden_r0 <= 1'b0; |
---|
| 194 | fifo_rden_r1 <= 1'b0; |
---|
| 195 | fifo_rden_r2 <= 1'b0; |
---|
| 196 | fifo_rden_r3 <= 1'b0; |
---|
| 197 | fifo_rden_r4 <= 1'b0; |
---|
| 198 | fifo_rden_r5 <= 1'b0; |
---|
| 199 | fifo_rden_r6 <= 1'b0; |
---|
| 200 | end else begin |
---|
| 201 | fifo_rden_r0 <= rden; |
---|
| 202 | fifo_rden_r1 <= fifo_rden_r0; |
---|
| 203 | fifo_rden_r2 <= fifo_rden_r1; |
---|
| 204 | fifo_rden_r3 <= fifo_rden_r2; |
---|
| 205 | fifo_rden_r4 <= fifo_rden_r3; |
---|
| 206 | fifo_rden_r5 <= fifo_rden_r4; |
---|
| 207 | fifo_rden_r6 <= fifo_rden_r5; |
---|
| 208 | end |
---|
| 209 | end |
---|
| 210 | |
---|
| 211 | for (rdf_i = 0; rdf_i < RDF_FIFO_NUM; rdf_i = rdf_i + 1) begin: gen_rdf |
---|
| 212 | |
---|
| 213 | FIFO36_72 # // rise fifo |
---|
| 214 | ( |
---|
| 215 | .ALMOST_EMPTY_OFFSET (9'h007), |
---|
| 216 | .ALMOST_FULL_OFFSET (9'h00F), |
---|
| 217 | .DO_REG (1), // extra CC output delay |
---|
| 218 | .EN_ECC_WRITE ("FALSE"), |
---|
| 219 | .EN_ECC_READ ("TRUE"), |
---|
| 220 | .EN_SYN ("FALSE"), |
---|
| 221 | .FIRST_WORD_FALL_THROUGH ("FALSE") |
---|
| 222 | ) |
---|
| 223 | u_rdf |
---|
| 224 | ( |
---|
| 225 | .ALMOSTEMPTY (), |
---|
| 226 | .ALMOSTFULL (), |
---|
| 227 | .DBITERR (db_ecc_error[rdf_i + rdf_i]), |
---|
| 228 | .DO (rd_data_out_rise_temp[(64*(rdf_i+1))-1: |
---|
| 229 | (64 *rdf_i)]), |
---|
| 230 | .DOP (), |
---|
| 231 | .ECCPARITY (), |
---|
| 232 | .EMPTY (), |
---|
| 233 | .FULL (), |
---|
| 234 | .RDCOUNT (), |
---|
| 235 | .RDERR (), |
---|
| 236 | .SBITERR (sb_ecc_error[rdf_i + rdf_i]), |
---|
| 237 | .WRCOUNT (), |
---|
| 238 | .WRERR (), |
---|
| 239 | .DI (rise_data_r[((64*(rdf_i+1)) + (rdf_i*8))-1: |
---|
| 240 | (64 *rdf_i)+(rdf_i*8)]), |
---|
| 241 | .DIP (rise_data_r[(72*(rdf_i+1))-1: |
---|
| 242 | (64*(rdf_i+1))+ (8*rdf_i)]), |
---|
| 243 | .RDCLK (clk0), |
---|
| 244 | .RDEN (~rst_r), |
---|
| 245 | .RST (rst_r), |
---|
| 246 | .WRCLK (clk0), |
---|
| 247 | .WREN (~rst_r) |
---|
| 248 | ); |
---|
| 249 | |
---|
| 250 | FIFO36_72 # // fall_fifo |
---|
| 251 | ( |
---|
| 252 | .ALMOST_EMPTY_OFFSET (9'h007), |
---|
| 253 | .ALMOST_FULL_OFFSET (9'h00F), |
---|
| 254 | .DO_REG (1), // extra CC output delay |
---|
| 255 | .EN_ECC_WRITE ("FALSE"), |
---|
| 256 | .EN_ECC_READ ("TRUE"), |
---|
| 257 | .EN_SYN ("FALSE"), |
---|
| 258 | .FIRST_WORD_FALL_THROUGH ("FALSE") |
---|
| 259 | ) |
---|
| 260 | u_rdf1 |
---|
| 261 | ( |
---|
| 262 | .ALMOSTEMPTY (), |
---|
| 263 | .ALMOSTFULL (), |
---|
| 264 | .DBITERR (db_ecc_error[(rdf_i+1) + rdf_i]), |
---|
| 265 | .DO (rd_data_out_fall_temp[(64*(rdf_i+1))-1: |
---|
| 266 | (64 *rdf_i)]), |
---|
| 267 | .DOP (), |
---|
| 268 | .ECCPARITY (), |
---|
| 269 | .EMPTY (), |
---|
| 270 | .FULL (), |
---|
| 271 | .RDCOUNT (), |
---|
| 272 | .RDERR (), |
---|
| 273 | .SBITERR (sb_ecc_error[(rdf_i+1) + rdf_i]), |
---|
| 274 | .WRCOUNT (), |
---|
| 275 | .WRERR (), |
---|
| 276 | .DI (fall_data_r[((64*(rdf_i+1)) + (rdf_i*8))-1: |
---|
| 277 | (64*rdf_i)+(rdf_i*8)]), |
---|
| 278 | .DIP (fall_data_r[(72*(rdf_i+1))-1: |
---|
| 279 | (64*(rdf_i+1))+ (8*rdf_i)]), |
---|
| 280 | .RDCLK (clk0), |
---|
| 281 | .RDEN (~rst_r), |
---|
| 282 | .RST (rst_r), // or can use rst0 |
---|
| 283 | .WRCLK (clk0), |
---|
| 284 | .WREN (~rst_r) |
---|
| 285 | ); |
---|
| 286 | end |
---|
| 287 | end else begin |
---|
| 288 | assign rd_data_valid = fifo_rden_r0; |
---|
| 289 | always @(posedge clk0) begin |
---|
| 290 | rd_data_out_rise <= rise_data; |
---|
| 291 | rd_data_out_fall <= fall_data; |
---|
| 292 | fifo_rden_r0 <= rden; |
---|
| 293 | end |
---|
| 294 | end |
---|
| 295 | endgenerate |
---|
| 296 | |
---|
| 297 | endmodule |
---|