[10] | 1 | //***************************************************************************** |
---|
| 2 | // DISCLAIMER OF LIABILITY |
---|
| 3 | // |
---|
| 4 | // This file contains proprietary and confidential information of |
---|
| 5 | // Xilinx, Inc. ("Xilinx"), that is distributed under a license |
---|
| 6 | // from Xilinx, and may be used, copied and/or disclosed only |
---|
| 7 | // pursuant to the terms of a valid license agreement with Xilinx. |
---|
| 8 | // |
---|
| 9 | // XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION |
---|
| 10 | // ("MATERIALS") "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER |
---|
| 11 | // EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING WITHOUT |
---|
| 12 | // LIMITATION, ANY WARRANTY WITH RESPECT TO NONINFRINGEMENT, |
---|
| 13 | // MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. Xilinx |
---|
| 14 | // does not warrant that functions included in the Materials will |
---|
| 15 | // meet the requirements of Licensee, or that the operation of the |
---|
| 16 | // Materials will be uninterrupted or error-free, or that defects |
---|
| 17 | // in the Materials will be corrected. Furthermore, Xilinx does |
---|
| 18 | // not warrant or make any representations regarding use, or the |
---|
| 19 | // results of the use, of the Materials in terms of correctness, |
---|
| 20 | // accuracy, reliability or otherwise. |
---|
| 21 | // |
---|
| 22 | // Xilinx products are not designed or intended to be fail-safe, |
---|
| 23 | // or for use in any application requiring fail-safe performance, |
---|
| 24 | // such as life-support or safety devices or systems, Class III |
---|
| 25 | // medical devices, nuclear facilities, applications related to |
---|
| 26 | // the deployment of airbags, or any other applications that could |
---|
| 27 | // lead to death, personal injury or severe property or |
---|
| 28 | // environmental damage (individually and collectively, "critical |
---|
| 29 | // applications"). Customer assumes the sole risk and liability |
---|
| 30 | // of any use of Xilinx products in critical applications, |
---|
| 31 | // subject only to applicable laws and regulations governing |
---|
| 32 | // limitations on product liability. |
---|
| 33 | // |
---|
| 34 | // Copyright 2006, 2007 Xilinx, Inc. |
---|
| 35 | // All rights reserved. |
---|
| 36 | // |
---|
| 37 | // This disclaimer and copyright notice must be retained as part |
---|
| 38 | // of this file at all times. |
---|
| 39 | //***************************************************************************** |
---|
| 40 | // ____ ____ |
---|
| 41 | // / /\/ / |
---|
| 42 | // /___/ \ / Vendor: Xilinx |
---|
| 43 | // \ \ \/ Version: 3.6 |
---|
| 44 | // \ \ Application: MIG |
---|
| 45 | // / / Filename: ddr2_usr_wr.v |
---|
| 46 | // /___/ /\ Date Last Modified: $Date: 2010/06/29 12:03:43 $ |
---|
| 47 | // \ \ / \ Date Created: Mon Aug 28 2006 |
---|
| 48 | // \___\/\___\ |
---|
| 49 | // |
---|
| 50 | //Device: Virtex-5 |
---|
| 51 | //Design Name: DDR/DDR2 |
---|
| 52 | //Purpose: |
---|
| 53 | // This module instantiates the modules containing internal FIFOs |
---|
| 54 | //Reference: |
---|
| 55 | //Revision History: |
---|
| 56 | //***************************************************************************** |
---|
| 57 | |
---|
| 58 | `timescale 1ns/1ps |
---|
| 59 | |
---|
| 60 | module ddr2_usr_wr # |
---|
| 61 | ( |
---|
| 62 | // Following parameters are for 72-bit RDIMM design (for ML561 Reference |
---|
| 63 | // board design). Actual values may be different. Actual parameters values |
---|
| 64 | // are passed from design top module dram module. Please refer to |
---|
| 65 | // the dram module for actual values. |
---|
| 66 | parameter BANK_WIDTH = 2, |
---|
| 67 | parameter COL_WIDTH = 10, |
---|
| 68 | parameter CS_BITS = 0, |
---|
| 69 | parameter DQ_WIDTH = 72, |
---|
| 70 | parameter APPDATA_WIDTH = 144, |
---|
| 71 | parameter ECC_ENABLE = 0, |
---|
| 72 | parameter ROW_WIDTH = 14 |
---|
| 73 | ) |
---|
| 74 | ( |
---|
| 75 | input clk0, |
---|
| 76 | input clk90, |
---|
| 77 | input rst0, |
---|
| 78 | // Write data FIFO interface |
---|
| 79 | input app_wdf_wren, |
---|
| 80 | input [APPDATA_WIDTH-1:0] app_wdf_data, |
---|
| 81 | input [(APPDATA_WIDTH/8)-1:0] app_wdf_mask_data, |
---|
| 82 | input wdf_rden, |
---|
| 83 | output app_wdf_afull, |
---|
| 84 | output [(2*DQ_WIDTH)-1:0] wdf_data, |
---|
| 85 | output [((2*DQ_WIDTH)/8)-1:0] wdf_mask_data |
---|
| 86 | ); |
---|
| 87 | |
---|
| 88 | // determine number of FIFO72's to use based on data width |
---|
| 89 | // round up to next integer value when determining WDF_FIFO_NUM |
---|
| 90 | localparam WDF_FIFO_NUM = (ECC_ENABLE) ? (APPDATA_WIDTH+63)/64 : |
---|
| 91 | ((2*DQ_WIDTH)+63)/64; |
---|
| 92 | // MASK_WIDTH = number of bytes in data bus |
---|
| 93 | localparam MASK_WIDTH = DQ_WIDTH/8; |
---|
| 94 | |
---|
| 95 | wire [WDF_FIFO_NUM-1:0] i_wdf_afull; |
---|
| 96 | wire [DQ_WIDTH-1:0] i_wdf_data_fall_in; |
---|
| 97 | wire [DQ_WIDTH-1:0] i_wdf_data_fall_out; |
---|
| 98 | wire [(64*WDF_FIFO_NUM)-1:0] i_wdf_data_in; |
---|
| 99 | wire [(64*WDF_FIFO_NUM)-1:0] i_wdf_data_out; |
---|
| 100 | wire [DQ_WIDTH-1:0] i_wdf_data_rise_in; |
---|
| 101 | wire [DQ_WIDTH-1:0] i_wdf_data_rise_out; |
---|
| 102 | wire [MASK_WIDTH-1:0] i_wdf_mask_data_fall_in; |
---|
| 103 | wire [MASK_WIDTH-1:0] i_wdf_mask_data_fall_out; |
---|
| 104 | wire [(8*WDF_FIFO_NUM)-1:0] i_wdf_mask_data_in; |
---|
| 105 | wire [(8*WDF_FIFO_NUM)-1:0] i_wdf_mask_data_out; |
---|
| 106 | wire [MASK_WIDTH-1:0] i_wdf_mask_data_rise_in; |
---|
| 107 | wire [MASK_WIDTH-1:0] i_wdf_mask_data_rise_out; |
---|
| 108 | reg rst_r; |
---|
| 109 | |
---|
| 110 | // ECC signals |
---|
| 111 | wire [(2*DQ_WIDTH)-1:0] i_wdf_data_out_ecc; |
---|
| 112 | wire [((2*DQ_WIDTH)/8)-1:0] i_wdf_mask_data_out_ecc; |
---|
| 113 | wire [63:0] i_wdf_mask_data_out_ecc_wire; |
---|
| 114 | wire [((2*DQ_WIDTH)/8)-1:0] mask_data_in_ecc; |
---|
| 115 | wire [63:0] mask_data_in_ecc_wire; |
---|
| 116 | |
---|
| 117 | //*************************************************************************** |
---|
| 118 | |
---|
| 119 | assign app_wdf_afull = i_wdf_afull[0]; |
---|
| 120 | |
---|
| 121 | always @(posedge clk0 ) |
---|
| 122 | rst_r <= rst0; |
---|
| 123 | |
---|
| 124 | genvar wdf_di_i; |
---|
| 125 | genvar wdf_do_i; |
---|
| 126 | genvar mask_i; |
---|
| 127 | genvar wdf_i; |
---|
| 128 | generate |
---|
| 129 | if(ECC_ENABLE) begin // ECC code |
---|
| 130 | |
---|
| 131 | assign wdf_data = i_wdf_data_out_ecc; |
---|
| 132 | |
---|
| 133 | // the byte 9 dm is always held to 0 |
---|
| 134 | assign wdf_mask_data = i_wdf_mask_data_out_ecc; |
---|
| 135 | |
---|
| 136 | |
---|
| 137 | |
---|
| 138 | // generate for write data fifo . |
---|
| 139 | for (wdf_i = 0; wdf_i < WDF_FIFO_NUM; wdf_i = wdf_i + 1) begin: gen_wdf |
---|
| 140 | |
---|
| 141 | FIFO36_72 # |
---|
| 142 | ( |
---|
| 143 | .ALMOST_EMPTY_OFFSET (9'h007), |
---|
| 144 | .ALMOST_FULL_OFFSET (9'h00F), |
---|
| 145 | .DO_REG (1), // extra CC output delay |
---|
| 146 | .EN_ECC_WRITE ("TRUE"), |
---|
| 147 | .EN_ECC_READ ("FALSE"), |
---|
| 148 | .EN_SYN ("FALSE"), |
---|
| 149 | .FIRST_WORD_FALL_THROUGH ("FALSE") |
---|
| 150 | ) |
---|
| 151 | u_wdf_ecc |
---|
| 152 | ( |
---|
| 153 | .ALMOSTEMPTY (), |
---|
| 154 | .ALMOSTFULL (i_wdf_afull[wdf_i]), |
---|
| 155 | .DBITERR (), |
---|
| 156 | .DO (i_wdf_data_out_ecc[((64*(wdf_i+1))+(wdf_i *8))-1: |
---|
| 157 | (64*wdf_i)+(wdf_i *8)]), |
---|
| 158 | .DOP (i_wdf_data_out_ecc[(72*(wdf_i+1))-1: |
---|
| 159 | (64*(wdf_i+1))+ (8*wdf_i) ]), |
---|
| 160 | .ECCPARITY (), |
---|
| 161 | .EMPTY (), |
---|
| 162 | .FULL (), |
---|
| 163 | .RDCOUNT (), |
---|
| 164 | .RDERR (), |
---|
| 165 | .SBITERR (), |
---|
| 166 | .WRCOUNT (), |
---|
| 167 | .WRERR (), |
---|
| 168 | .DI (app_wdf_data[(64*(wdf_i+1))-1: |
---|
| 169 | (64*wdf_i)]), |
---|
| 170 | .DIP (), |
---|
| 171 | .RDCLK (clk90), |
---|
| 172 | .RDEN (wdf_rden), |
---|
| 173 | .RST (rst_r), // or can use rst0 |
---|
| 174 | .WRCLK (clk0), |
---|
| 175 | .WREN (app_wdf_wren) |
---|
| 176 | ); |
---|
| 177 | end |
---|
| 178 | |
---|
| 179 | // remapping the mask data. The mask data from user i/f does not have |
---|
| 180 | // the mask for the ECC byte. Assigning 0 to the ECC mask byte. |
---|
| 181 | for (mask_i = 0; mask_i < (DQ_WIDTH)/36; |
---|
| 182 | mask_i = mask_i +1) begin: gen_mask |
---|
| 183 | assign mask_data_in_ecc[((8*(mask_i+1))+ mask_i)-1:((8*mask_i)+mask_i)] |
---|
| 184 | = app_wdf_mask_data[(8*(mask_i+1))-1:8*(mask_i)] ; |
---|
| 185 | assign mask_data_in_ecc[((8*(mask_i+1))+mask_i)] = 1'd0; |
---|
| 186 | end |
---|
| 187 | |
---|
| 188 | // assign ecc bits to temp variables to avoid |
---|
| 189 | // sim warnings. Not all the 64 bits of the fifo |
---|
| 190 | // are used in ECC mode. |
---|
| 191 | assign mask_data_in_ecc_wire[((2*DQ_WIDTH)/8)-1:0] = mask_data_in_ecc; |
---|
| 192 | assign mask_data_in_ecc_wire[63:((2*DQ_WIDTH)/8)] = |
---|
| 193 | {(64-((2*DQ_WIDTH)/8)){1'b0}}; |
---|
| 194 | assign i_wdf_mask_data_out_ecc = |
---|
| 195 | i_wdf_mask_data_out_ecc_wire[((2*DQ_WIDTH)/8)-1:0]; |
---|
| 196 | |
---|
| 197 | |
---|
| 198 | FIFO36_72 # |
---|
| 199 | ( |
---|
| 200 | .ALMOST_EMPTY_OFFSET (9'h007), |
---|
| 201 | .ALMOST_FULL_OFFSET (9'h00F), |
---|
| 202 | .DO_REG (1), // extra CC output delay |
---|
| 203 | .EN_ECC_WRITE ("TRUE"), |
---|
| 204 | .EN_ECC_READ ("FALSE"), |
---|
| 205 | .EN_SYN ("FALSE"), |
---|
| 206 | .FIRST_WORD_FALL_THROUGH ("FALSE") |
---|
| 207 | ) |
---|
| 208 | u_wdf_ecc_mask |
---|
| 209 | ( |
---|
| 210 | .ALMOSTEMPTY (), |
---|
| 211 | .ALMOSTFULL (), |
---|
| 212 | .DBITERR (), |
---|
| 213 | .DO (i_wdf_mask_data_out_ecc_wire), |
---|
| 214 | .DOP (), |
---|
| 215 | .ECCPARITY (), |
---|
| 216 | .EMPTY (), |
---|
| 217 | .FULL (), |
---|
| 218 | .RDCOUNT (), |
---|
| 219 | .RDERR (), |
---|
| 220 | .SBITERR (), |
---|
| 221 | .WRCOUNT (), |
---|
| 222 | .WRERR (), |
---|
| 223 | .DI (mask_data_in_ecc_wire), |
---|
| 224 | .DIP (), |
---|
| 225 | .RDCLK (clk90), |
---|
| 226 | .RDEN (wdf_rden), |
---|
| 227 | .RST (rst_r), // or can use rst0 |
---|
| 228 | .WRCLK (clk0), |
---|
| 229 | .WREN (app_wdf_wren) |
---|
| 230 | ); |
---|
| 231 | end else begin |
---|
| 232 | |
---|
| 233 | //*********************************************************************** |
---|
| 234 | |
---|
| 235 | // Define intermediate buses: |
---|
| 236 | assign i_wdf_data_rise_in |
---|
| 237 | = app_wdf_data[DQ_WIDTH-1:0]; |
---|
| 238 | assign i_wdf_data_fall_in |
---|
| 239 | = app_wdf_data[(2*DQ_WIDTH)-1:DQ_WIDTH]; |
---|
| 240 | assign i_wdf_mask_data_rise_in |
---|
| 241 | = app_wdf_mask_data[MASK_WIDTH-1:0]; |
---|
| 242 | assign i_wdf_mask_data_fall_in |
---|
| 243 | = app_wdf_mask_data[(2*MASK_WIDTH)-1:MASK_WIDTH]; |
---|
| 244 | |
---|
| 245 | //*********************************************************************** |
---|
| 246 | // Write data FIFO Input: |
---|
| 247 | // Arrange DQ's so that the rise data and fall data are interleaved. |
---|
| 248 | // the data arrives at the input of the wdf fifo as {fall,rise}. |
---|
| 249 | // It is remapped as: |
---|
| 250 | // {...fall[15:8],rise[15:8],fall[7:0],rise[7:0]} |
---|
| 251 | // This is done to avoid having separate fifo's for rise and fall data |
---|
| 252 | // and to keep rise/fall data for the same DQ's on same FIFO |
---|
| 253 | // Data masks are interleaved in a similar manner |
---|
| 254 | // NOTE: Initialization data from PHY_INIT module does not need to be |
---|
| 255 | // interleaved - it's already in the correct format - and the same |
---|
| 256 | // initialization pattern from PHY_INIT is sent to all write FIFOs |
---|
| 257 | //*********************************************************************** |
---|
| 258 | |
---|
| 259 | for (wdf_di_i = 0; wdf_di_i < MASK_WIDTH; |
---|
| 260 | wdf_di_i = wdf_di_i + 1) begin: gen_wdf_data_in |
---|
| 261 | assign i_wdf_data_in[(16*wdf_di_i)+15:(16*wdf_di_i)] |
---|
| 262 | = {i_wdf_data_fall_in[(8*wdf_di_i)+7:(8*wdf_di_i)], |
---|
| 263 | i_wdf_data_rise_in[(8*wdf_di_i)+7:(8*wdf_di_i)]}; |
---|
| 264 | assign i_wdf_mask_data_in[(2*wdf_di_i)+1:(2*wdf_di_i)] |
---|
| 265 | = {i_wdf_mask_data_fall_in[wdf_di_i], |
---|
| 266 | i_wdf_mask_data_rise_in[wdf_di_i]}; |
---|
| 267 | end |
---|
| 268 | |
---|
| 269 | //*********************************************************************** |
---|
| 270 | // Write data FIFO Output: |
---|
| 271 | // FIFO DQ and mask outputs must be untangled and put in the standard |
---|
| 272 | // format of {fall,rise}. Same goes for mask output |
---|
| 273 | //*********************************************************************** |
---|
| 274 | |
---|
| 275 | for (wdf_do_i = 0; wdf_do_i < MASK_WIDTH; |
---|
| 276 | wdf_do_i = wdf_do_i + 1) begin: gen_wdf_data_out |
---|
| 277 | assign i_wdf_data_rise_out[(8*wdf_do_i)+7:(8*wdf_do_i)] |
---|
| 278 | = i_wdf_data_out[(16*wdf_do_i)+7:(16*wdf_do_i)]; |
---|
| 279 | assign i_wdf_data_fall_out[(8*wdf_do_i)+7:(8*wdf_do_i)] |
---|
| 280 | = i_wdf_data_out[(16*wdf_do_i)+15:(16*wdf_do_i)+8]; |
---|
| 281 | assign i_wdf_mask_data_rise_out[wdf_do_i] |
---|
| 282 | = i_wdf_mask_data_out[2*wdf_do_i]; |
---|
| 283 | assign i_wdf_mask_data_fall_out[wdf_do_i] |
---|
| 284 | = i_wdf_mask_data_out[(2*wdf_do_i)+1]; |
---|
| 285 | end |
---|
| 286 | |
---|
| 287 | assign wdf_data = {i_wdf_data_fall_out, |
---|
| 288 | i_wdf_data_rise_out}; |
---|
| 289 | |
---|
| 290 | assign wdf_mask_data = {i_wdf_mask_data_fall_out, |
---|
| 291 | i_wdf_mask_data_rise_out}; |
---|
| 292 | |
---|
| 293 | //*********************************************************************** |
---|
| 294 | |
---|
| 295 | for (wdf_i = 0; wdf_i < WDF_FIFO_NUM; wdf_i = wdf_i + 1) begin: gen_wdf |
---|
| 296 | |
---|
| 297 | FIFO36_72 # |
---|
| 298 | ( |
---|
| 299 | .ALMOST_EMPTY_OFFSET (9'h007), |
---|
| 300 | .ALMOST_FULL_OFFSET (9'h00F), |
---|
| 301 | .DO_REG (1), // extra CC output delay |
---|
| 302 | .EN_ECC_WRITE ("FALSE"), |
---|
| 303 | .EN_ECC_READ ("FALSE"), |
---|
| 304 | .EN_SYN ("FALSE"), |
---|
| 305 | .FIRST_WORD_FALL_THROUGH ("FALSE") |
---|
| 306 | ) |
---|
| 307 | u_wdf |
---|
| 308 | ( |
---|
| 309 | .ALMOSTEMPTY (), |
---|
| 310 | .ALMOSTFULL (i_wdf_afull[wdf_i]), |
---|
| 311 | .DBITERR (), |
---|
| 312 | .DO (i_wdf_data_out[(64*(wdf_i+1))-1:64*wdf_i]), |
---|
| 313 | .DOP (i_wdf_mask_data_out[(8*(wdf_i+1))-1:8*wdf_i]), |
---|
| 314 | .ECCPARITY (), |
---|
| 315 | .EMPTY (), |
---|
| 316 | .FULL (), |
---|
| 317 | .RDCOUNT (), |
---|
| 318 | .RDERR (), |
---|
| 319 | .SBITERR (), |
---|
| 320 | .WRCOUNT (), |
---|
| 321 | .WRERR (), |
---|
| 322 | .DI (i_wdf_data_in[(64*(wdf_i+1))-1:64*wdf_i]), |
---|
| 323 | .DIP (i_wdf_mask_data_in[(8*(wdf_i+1))-1:8*wdf_i]), |
---|
| 324 | .RDCLK (clk90), |
---|
| 325 | .RDEN (wdf_rden), |
---|
| 326 | .RST (rst_r), // or can use rst0 |
---|
| 327 | .WRCLK (clk0), |
---|
| 328 | .WREN (app_wdf_wren) |
---|
| 329 | ); |
---|
| 330 | end |
---|
| 331 | end |
---|
| 332 | endgenerate |
---|
| 333 | |
---|
| 334 | endmodule |
---|