1 | //***************************************************************************** |
---|
2 | // DISCLAIMER OF LIABILITY |
---|
3 | // |
---|
4 | // This file contains proprietary and confidential information of |
---|
5 | // Xilinx, Inc. ("Xilinx"), that is distributed under a license |
---|
6 | // from Xilinx, and may be used, copied and/or disclosed only |
---|
7 | // pursuant to the terms of a valid license agreement with Xilinx. |
---|
8 | // |
---|
9 | // XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION |
---|
10 | // ("MATERIALS") "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER |
---|
11 | // EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING WITHOUT |
---|
12 | // LIMITATION, ANY WARRANTY WITH RESPECT TO NONINFRINGEMENT, |
---|
13 | // MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. Xilinx |
---|
14 | // does not warrant that functions included in the Materials will |
---|
15 | // meet the requirements of Licensee, or that the operation of the |
---|
16 | // Materials will be uninterrupted or error-free, or that defects |
---|
17 | // in the Materials will be corrected. Furthermore, Xilinx does |
---|
18 | // not warrant or make any representations regarding use, or the |
---|
19 | // results of the use, of the Materials in terms of correctness, |
---|
20 | // accuracy, reliability or otherwise. |
---|
21 | // |
---|
22 | // Xilinx products are not designed or intended to be fail-safe, |
---|
23 | // or for use in any application requiring fail-safe performance, |
---|
24 | // such as life-support or safety devices or systems, Class III |
---|
25 | // medical devices, nuclear facilities, applications related to |
---|
26 | // the deployment of airbags, or any other applications that could |
---|
27 | // lead to death, personal injury or severe property or |
---|
28 | // environmental damage (individually and collectively, "critical |
---|
29 | // applications"). Customer assumes the sole risk and liability |
---|
30 | // of any use of Xilinx products in critical applications, |
---|
31 | // subject only to applicable laws and regulations governing |
---|
32 | // limitations on product liability. |
---|
33 | // |
---|
34 | // Copyright 2006, 2007 Xilinx, Inc. |
---|
35 | // All rights reserved. |
---|
36 | // |
---|
37 | // This disclaimer and copyright notice must be retained as part |
---|
38 | // of this file at all times. |
---|
39 | //***************************************************************************** |
---|
40 | // ____ ____ |
---|
41 | // / /\/ / |
---|
42 | // /___/ \ / Vendor: Xilinx |
---|
43 | // \ \ \/ Version: 3.6 |
---|
44 | // \ \ Application: MIG |
---|
45 | // / / Filename: ddr2_usr_wr.v |
---|
46 | // /___/ /\ Date Last Modified: $Date: 2010/06/29 12:03:43 $ |
---|
47 | // \ \ / \ Date Created: Mon Aug 28 2006 |
---|
48 | // \___\/\___\ |
---|
49 | // |
---|
50 | //Device: Virtex-5 |
---|
51 | //Design Name: DDR/DDR2 |
---|
52 | //Purpose: |
---|
53 | // This module instantiates the modules containing internal FIFOs |
---|
54 | //Reference: |
---|
55 | //Revision History: |
---|
56 | //***************************************************************************** |
---|
57 | |
---|
58 | `timescale 1ns/1ps |
---|
59 | |
---|
60 | module ddr2_usr_wr # |
---|
61 | ( |
---|
62 | // Following parameters are for 72-bit RDIMM design (for ML561 Reference |
---|
63 | // board design). Actual values may be different. Actual parameters values |
---|
64 | // are passed from design top module dram module. Please refer to |
---|
65 | // the dram module for actual values. |
---|
66 | parameter BANK_WIDTH = 2, |
---|
67 | parameter COL_WIDTH = 10, |
---|
68 | parameter CS_BITS = 0, |
---|
69 | parameter DQ_WIDTH = 72, |
---|
70 | parameter APPDATA_WIDTH = 144, |
---|
71 | parameter ECC_ENABLE = 0, |
---|
72 | parameter ROW_WIDTH = 14 |
---|
73 | ) |
---|
74 | ( |
---|
75 | input clk0, |
---|
76 | input clk90, |
---|
77 | input rst0, |
---|
78 | // Write data FIFO interface |
---|
79 | input app_wdf_wren, |
---|
80 | input [APPDATA_WIDTH-1:0] app_wdf_data, |
---|
81 | input [(APPDATA_WIDTH/8)-1:0] app_wdf_mask_data, |
---|
82 | input wdf_rden, |
---|
83 | output app_wdf_afull, |
---|
84 | output [(2*DQ_WIDTH)-1:0] wdf_data, |
---|
85 | output [((2*DQ_WIDTH)/8)-1:0] wdf_mask_data |
---|
86 | ); |
---|
87 | |
---|
88 | // determine number of FIFO72's to use based on data width |
---|
89 | // round up to next integer value when determining WDF_FIFO_NUM |
---|
90 | localparam WDF_FIFO_NUM = (ECC_ENABLE) ? (APPDATA_WIDTH+63)/64 : |
---|
91 | ((2*DQ_WIDTH)+63)/64; |
---|
92 | // MASK_WIDTH = number of bytes in data bus |
---|
93 | localparam MASK_WIDTH = DQ_WIDTH/8; |
---|
94 | |
---|
95 | wire [WDF_FIFO_NUM-1:0] i_wdf_afull; |
---|
96 | wire [DQ_WIDTH-1:0] i_wdf_data_fall_in; |
---|
97 | wire [DQ_WIDTH-1:0] i_wdf_data_fall_out; |
---|
98 | wire [(64*WDF_FIFO_NUM)-1:0] i_wdf_data_in; |
---|
99 | wire [(64*WDF_FIFO_NUM)-1:0] i_wdf_data_out; |
---|
100 | wire [DQ_WIDTH-1:0] i_wdf_data_rise_in; |
---|
101 | wire [DQ_WIDTH-1:0] i_wdf_data_rise_out; |
---|
102 | wire [MASK_WIDTH-1:0] i_wdf_mask_data_fall_in; |
---|
103 | wire [MASK_WIDTH-1:0] i_wdf_mask_data_fall_out; |
---|
104 | wire [(8*WDF_FIFO_NUM)-1:0] i_wdf_mask_data_in; |
---|
105 | wire [(8*WDF_FIFO_NUM)-1:0] i_wdf_mask_data_out; |
---|
106 | wire [MASK_WIDTH-1:0] i_wdf_mask_data_rise_in; |
---|
107 | wire [MASK_WIDTH-1:0] i_wdf_mask_data_rise_out; |
---|
108 | reg rst_r; |
---|
109 | |
---|
110 | // ECC signals |
---|
111 | wire [(2*DQ_WIDTH)-1:0] i_wdf_data_out_ecc; |
---|
112 | wire [((2*DQ_WIDTH)/8)-1:0] i_wdf_mask_data_out_ecc; |
---|
113 | wire [63:0] i_wdf_mask_data_out_ecc_wire; |
---|
114 | wire [((2*DQ_WIDTH)/8)-1:0] mask_data_in_ecc; |
---|
115 | wire [63:0] mask_data_in_ecc_wire; |
---|
116 | |
---|
117 | //*************************************************************************** |
---|
118 | |
---|
119 | assign app_wdf_afull = i_wdf_afull[0]; |
---|
120 | |
---|
121 | always @(posedge clk0 ) |
---|
122 | rst_r <= rst0; |
---|
123 | |
---|
124 | genvar wdf_di_i; |
---|
125 | genvar wdf_do_i; |
---|
126 | genvar mask_i; |
---|
127 | genvar wdf_i; |
---|
128 | generate |
---|
129 | if(ECC_ENABLE) begin // ECC code |
---|
130 | |
---|
131 | assign wdf_data = i_wdf_data_out_ecc; |
---|
132 | |
---|
133 | // the byte 9 dm is always held to 0 |
---|
134 | assign wdf_mask_data = i_wdf_mask_data_out_ecc; |
---|
135 | |
---|
136 | |
---|
137 | |
---|
138 | // generate for write data fifo . |
---|
139 | for (wdf_i = 0; wdf_i < WDF_FIFO_NUM; wdf_i = wdf_i + 1) begin: gen_wdf |
---|
140 | |
---|
141 | FIFO36_72 # |
---|
142 | ( |
---|
143 | .ALMOST_EMPTY_OFFSET (9'h007), |
---|
144 | .ALMOST_FULL_OFFSET (9'h00F), |
---|
145 | .DO_REG (1), // extra CC output delay |
---|
146 | .EN_ECC_WRITE ("TRUE"), |
---|
147 | .EN_ECC_READ ("FALSE"), |
---|
148 | .EN_SYN ("FALSE"), |
---|
149 | .FIRST_WORD_FALL_THROUGH ("FALSE") |
---|
150 | ) |
---|
151 | u_wdf_ecc |
---|
152 | ( |
---|
153 | .ALMOSTEMPTY (), |
---|
154 | .ALMOSTFULL (i_wdf_afull[wdf_i]), |
---|
155 | .DBITERR (), |
---|
156 | .DO (i_wdf_data_out_ecc[((64*(wdf_i+1))+(wdf_i *8))-1: |
---|
157 | (64*wdf_i)+(wdf_i *8)]), |
---|
158 | .DOP (i_wdf_data_out_ecc[(72*(wdf_i+1))-1: |
---|
159 | (64*(wdf_i+1))+ (8*wdf_i) ]), |
---|
160 | .ECCPARITY (), |
---|
161 | .EMPTY (), |
---|
162 | .FULL (), |
---|
163 | .RDCOUNT (), |
---|
164 | .RDERR (), |
---|
165 | .SBITERR (), |
---|
166 | .WRCOUNT (), |
---|
167 | .WRERR (), |
---|
168 | .DI (app_wdf_data[(64*(wdf_i+1))-1: |
---|
169 | (64*wdf_i)]), |
---|
170 | .DIP (), |
---|
171 | .RDCLK (clk90), |
---|
172 | .RDEN (wdf_rden), |
---|
173 | .RST (rst_r), // or can use rst0 |
---|
174 | .WRCLK (clk0), |
---|
175 | .WREN (app_wdf_wren) |
---|
176 | ); |
---|
177 | end |
---|
178 | |
---|
179 | // remapping the mask data. The mask data from user i/f does not have |
---|
180 | // the mask for the ECC byte. Assigning 0 to the ECC mask byte. |
---|
181 | for (mask_i = 0; mask_i < (DQ_WIDTH)/36; |
---|
182 | mask_i = mask_i +1) begin: gen_mask |
---|
183 | assign mask_data_in_ecc[((8*(mask_i+1))+ mask_i)-1:((8*mask_i)+mask_i)] |
---|
184 | = app_wdf_mask_data[(8*(mask_i+1))-1:8*(mask_i)] ; |
---|
185 | assign mask_data_in_ecc[((8*(mask_i+1))+mask_i)] = 1'd0; |
---|
186 | end |
---|
187 | |
---|
188 | // assign ecc bits to temp variables to avoid |
---|
189 | // sim warnings. Not all the 64 bits of the fifo |
---|
190 | // are used in ECC mode. |
---|
191 | assign mask_data_in_ecc_wire[((2*DQ_WIDTH)/8)-1:0] = mask_data_in_ecc; |
---|
192 | assign mask_data_in_ecc_wire[63:((2*DQ_WIDTH)/8)] = |
---|
193 | {(64-((2*DQ_WIDTH)/8)){1'b0}}; |
---|
194 | assign i_wdf_mask_data_out_ecc = |
---|
195 | i_wdf_mask_data_out_ecc_wire[((2*DQ_WIDTH)/8)-1:0]; |
---|
196 | |
---|
197 | |
---|
198 | FIFO36_72 # |
---|
199 | ( |
---|
200 | .ALMOST_EMPTY_OFFSET (9'h007), |
---|
201 | .ALMOST_FULL_OFFSET (9'h00F), |
---|
202 | .DO_REG (1), // extra CC output delay |
---|
203 | .EN_ECC_WRITE ("TRUE"), |
---|
204 | .EN_ECC_READ ("FALSE"), |
---|
205 | .EN_SYN ("FALSE"), |
---|
206 | .FIRST_WORD_FALL_THROUGH ("FALSE") |
---|
207 | ) |
---|
208 | u_wdf_ecc_mask |
---|
209 | ( |
---|
210 | .ALMOSTEMPTY (), |
---|
211 | .ALMOSTFULL (), |
---|
212 | .DBITERR (), |
---|
213 | .DO (i_wdf_mask_data_out_ecc_wire), |
---|
214 | .DOP (), |
---|
215 | .ECCPARITY (), |
---|
216 | .EMPTY (), |
---|
217 | .FULL (), |
---|
218 | .RDCOUNT (), |
---|
219 | .RDERR (), |
---|
220 | .SBITERR (), |
---|
221 | .WRCOUNT (), |
---|
222 | .WRERR (), |
---|
223 | .DI (mask_data_in_ecc_wire), |
---|
224 | .DIP (), |
---|
225 | .RDCLK (clk90), |
---|
226 | .RDEN (wdf_rden), |
---|
227 | .RST (rst_r), // or can use rst0 |
---|
228 | .WRCLK (clk0), |
---|
229 | .WREN (app_wdf_wren) |
---|
230 | ); |
---|
231 | end else begin |
---|
232 | |
---|
233 | //*********************************************************************** |
---|
234 | |
---|
235 | // Define intermediate buses: |
---|
236 | assign i_wdf_data_rise_in |
---|
237 | = app_wdf_data[DQ_WIDTH-1:0]; |
---|
238 | assign i_wdf_data_fall_in |
---|
239 | = app_wdf_data[(2*DQ_WIDTH)-1:DQ_WIDTH]; |
---|
240 | assign i_wdf_mask_data_rise_in |
---|
241 | = app_wdf_mask_data[MASK_WIDTH-1:0]; |
---|
242 | assign i_wdf_mask_data_fall_in |
---|
243 | = app_wdf_mask_data[(2*MASK_WIDTH)-1:MASK_WIDTH]; |
---|
244 | |
---|
245 | //*********************************************************************** |
---|
246 | // Write data FIFO Input: |
---|
247 | // Arrange DQ's so that the rise data and fall data are interleaved. |
---|
248 | // the data arrives at the input of the wdf fifo as {fall,rise}. |
---|
249 | // It is remapped as: |
---|
250 | // {...fall[15:8],rise[15:8],fall[7:0],rise[7:0]} |
---|
251 | // This is done to avoid having separate fifo's for rise and fall data |
---|
252 | // and to keep rise/fall data for the same DQ's on same FIFO |
---|
253 | // Data masks are interleaved in a similar manner |
---|
254 | // NOTE: Initialization data from PHY_INIT module does not need to be |
---|
255 | // interleaved - it's already in the correct format - and the same |
---|
256 | // initialization pattern from PHY_INIT is sent to all write FIFOs |
---|
257 | //*********************************************************************** |
---|
258 | |
---|
259 | for (wdf_di_i = 0; wdf_di_i < MASK_WIDTH; |
---|
260 | wdf_di_i = wdf_di_i + 1) begin: gen_wdf_data_in |
---|
261 | assign i_wdf_data_in[(16*wdf_di_i)+15:(16*wdf_di_i)] |
---|
262 | = {i_wdf_data_fall_in[(8*wdf_di_i)+7:(8*wdf_di_i)], |
---|
263 | i_wdf_data_rise_in[(8*wdf_di_i)+7:(8*wdf_di_i)]}; |
---|
264 | assign i_wdf_mask_data_in[(2*wdf_di_i)+1:(2*wdf_di_i)] |
---|
265 | = {i_wdf_mask_data_fall_in[wdf_di_i], |
---|
266 | i_wdf_mask_data_rise_in[wdf_di_i]}; |
---|
267 | end |
---|
268 | |
---|
269 | //*********************************************************************** |
---|
270 | // Write data FIFO Output: |
---|
271 | // FIFO DQ and mask outputs must be untangled and put in the standard |
---|
272 | // format of {fall,rise}. Same goes for mask output |
---|
273 | //*********************************************************************** |
---|
274 | |
---|
275 | for (wdf_do_i = 0; wdf_do_i < MASK_WIDTH; |
---|
276 | wdf_do_i = wdf_do_i + 1) begin: gen_wdf_data_out |
---|
277 | assign i_wdf_data_rise_out[(8*wdf_do_i)+7:(8*wdf_do_i)] |
---|
278 | = i_wdf_data_out[(16*wdf_do_i)+7:(16*wdf_do_i)]; |
---|
279 | assign i_wdf_data_fall_out[(8*wdf_do_i)+7:(8*wdf_do_i)] |
---|
280 | = i_wdf_data_out[(16*wdf_do_i)+15:(16*wdf_do_i)+8]; |
---|
281 | assign i_wdf_mask_data_rise_out[wdf_do_i] |
---|
282 | = i_wdf_mask_data_out[2*wdf_do_i]; |
---|
283 | assign i_wdf_mask_data_fall_out[wdf_do_i] |
---|
284 | = i_wdf_mask_data_out[(2*wdf_do_i)+1]; |
---|
285 | end |
---|
286 | |
---|
287 | assign wdf_data = {i_wdf_data_fall_out, |
---|
288 | i_wdf_data_rise_out}; |
---|
289 | |
---|
290 | assign wdf_mask_data = {i_wdf_mask_data_fall_out, |
---|
291 | i_wdf_mask_data_rise_out}; |
---|
292 | |
---|
293 | //*********************************************************************** |
---|
294 | |
---|
295 | for (wdf_i = 0; wdf_i < WDF_FIFO_NUM; wdf_i = wdf_i + 1) begin: gen_wdf |
---|
296 | |
---|
297 | FIFO36_72 # |
---|
298 | ( |
---|
299 | .ALMOST_EMPTY_OFFSET (9'h007), |
---|
300 | .ALMOST_FULL_OFFSET (9'h00F), |
---|
301 | .DO_REG (1), // extra CC output delay |
---|
302 | .EN_ECC_WRITE ("FALSE"), |
---|
303 | .EN_ECC_READ ("FALSE"), |
---|
304 | .EN_SYN ("FALSE"), |
---|
305 | .FIRST_WORD_FALL_THROUGH ("FALSE") |
---|
306 | ) |
---|
307 | u_wdf |
---|
308 | ( |
---|
309 | .ALMOSTEMPTY (), |
---|
310 | .ALMOSTFULL (i_wdf_afull[wdf_i]), |
---|
311 | .DBITERR (), |
---|
312 | .DO (i_wdf_data_out[(64*(wdf_i+1))-1:64*wdf_i]), |
---|
313 | .DOP (i_wdf_mask_data_out[(8*(wdf_i+1))-1:8*wdf_i]), |
---|
314 | .ECCPARITY (), |
---|
315 | .EMPTY (), |
---|
316 | .FULL (), |
---|
317 | .RDCOUNT (), |
---|
318 | .RDERR (), |
---|
319 | .SBITERR (), |
---|
320 | .WRCOUNT (), |
---|
321 | .WRERR (), |
---|
322 | .DI (i_wdf_data_in[(64*(wdf_i+1))-1:64*wdf_i]), |
---|
323 | .DIP (i_wdf_mask_data_in[(8*(wdf_i+1))-1:8*wdf_i]), |
---|
324 | .RDCLK (clk90), |
---|
325 | .RDEN (wdf_rden), |
---|
326 | .RST (rst_r), // or can use rst0 |
---|
327 | .WRCLK (clk0), |
---|
328 | .WREN (app_wdf_wren) |
---|
329 | ); |
---|
330 | end |
---|
331 | end |
---|
332 | endgenerate |
---|
333 | |
---|
334 | endmodule |
---|