[10] | 1 | //***************************************************************************** |
---|
| 2 | // (c) Copyright 2006-2009 Xilinx, Inc. All rights reserved. |
---|
| 3 | // |
---|
| 4 | // This file contains confidential and proprietary information |
---|
| 5 | // of Xilinx, Inc. and is protected under U.S. and |
---|
| 6 | // international copyright and other intellectual property |
---|
| 7 | // laws. |
---|
| 8 | // |
---|
| 9 | // DISCLAIMER |
---|
| 10 | // This disclaimer is not a license and does not grant any |
---|
| 11 | // rights to the materials distributed herewith. Except as |
---|
| 12 | // otherwise provided in a valid license issued to you by |
---|
| 13 | // Xilinx, and to the maximum extent permitted by applicable |
---|
| 14 | // law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND |
---|
| 15 | // WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES |
---|
| 16 | // AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING |
---|
| 17 | // BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- |
---|
| 18 | // INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and |
---|
| 19 | // (2) Xilinx shall not be liable (whether in contract or tort, |
---|
| 20 | // including negligence, or under any other theory of |
---|
| 21 | // liability) for any loss or damage of any kind or nature |
---|
| 22 | // related to, arising under or in connection with these |
---|
| 23 | // materials, including for any direct, or any indirect, |
---|
| 24 | // special, incidental, or consequential loss or damage |
---|
| 25 | // (including loss of data, profits, goodwill, or any type of |
---|
| 26 | // loss or damage suffered as a result of any action brought |
---|
| 27 | // by a third party) even if such damage or loss was |
---|
| 28 | // reasonably foreseeable or Xilinx had been advised of the |
---|
| 29 | // possibility of the same. |
---|
| 30 | // |
---|
| 31 | // CRITICAL APPLICATIONS |
---|
| 32 | // Xilinx products are not designed or intended to be fail- |
---|
| 33 | // safe, or for use in any application requiring fail-safe |
---|
| 34 | // performance, such as life-support or safety devices or |
---|
| 35 | // systems, Class III medical devices, nuclear facilities, |
---|
| 36 | // applications related to the deployment of airbags, or any |
---|
| 37 | // other applications that could lead to death, personal |
---|
| 38 | // injury, or severe property or environmental damage |
---|
| 39 | // (individually and collectively, "Critical |
---|
| 40 | // Applications"). Customer assumes the sole risk and |
---|
| 41 | // liability of any use of Xilinx products in Critical |
---|
| 42 | // Applications, subject only to applicable laws and |
---|
| 43 | // regulations governing limitations on product liability. |
---|
| 44 | // |
---|
| 45 | // THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS |
---|
| 46 | // PART OF THIS FILE AT ALL TIMES. |
---|
| 47 | //***************************************************************************** |
---|
| 48 | // ____ ____ |
---|
| 49 | // / /\/ / |
---|
| 50 | // /___/ \ / Vendor: Xilinx |
---|
| 51 | // \ \ \/ Version: 3.6 |
---|
| 52 | // \ \ Application: MIG |
---|
| 53 | // / / Filename: ddr2_phy_calib.v |
---|
| 54 | // /___/ /\ Date Last Modified: $Date: 2010/06/29 12:03:43 $ |
---|
| 55 | // \ \ / \ Date Created: Thu Aug 10 2006 |
---|
| 56 | // \___\/\___\ |
---|
| 57 | // |
---|
| 58 | //Device: Virtex-5 |
---|
| 59 | //Design Name: DDR2 |
---|
| 60 | //Purpose: |
---|
| 61 | // This module handles calibration after memory initialization. |
---|
| 62 | //Reference: |
---|
| 63 | //Revision History: |
---|
| 64 | // Rev 1.1 - Default statement is added for the CASE statement of |
---|
| 65 | // rdd_mux_sel logic. PK. 03/23/09 |
---|
| 66 | // Rev 1.2 - Change training pattern detected for stage 3 calibration. |
---|
| 67 | // Use 2-bits per DQS group for stage 3 pattern detection. |
---|
| 68 | // RC. 09/21/09 |
---|
| 69 | //***************************************************************************** |
---|
| 70 | |
---|
| 71 | `timescale 1ns/1ps |
---|
| 72 | |
---|
| 73 | module ddr2_phy_calib # |
---|
| 74 | ( |
---|
| 75 | // Following parameters are for 72-bit RDIMM design (for ML561 Reference |
---|
| 76 | // board design). Actual values may be different. Actual parameters values |
---|
| 77 | // are passed from design top module dram module. Please refer to |
---|
| 78 | // the dram module for actual values. |
---|
| 79 | parameter DQ_WIDTH = 72, |
---|
| 80 | parameter DQ_BITS = 7, |
---|
| 81 | parameter DQ_PER_DQS = 8, |
---|
| 82 | parameter DQS_BITS = 4, |
---|
| 83 | parameter DQS_WIDTH = 9, |
---|
| 84 | parameter ADDITIVE_LAT = 0, |
---|
| 85 | parameter CAS_LAT = 5, |
---|
| 86 | parameter REG_ENABLE = 1, |
---|
| 87 | parameter CLK_PERIOD = 3000, |
---|
| 88 | parameter SIM_ONLY = 0, |
---|
| 89 | parameter DEBUG_EN = 0 |
---|
| 90 | ) |
---|
| 91 | ( |
---|
| 92 | input clk, |
---|
| 93 | input clkdiv, |
---|
| 94 | input rstdiv, |
---|
| 95 | input [3:0] calib_start, |
---|
| 96 | input ctrl_rden, |
---|
| 97 | input phy_init_rden, |
---|
| 98 | input [DQ_WIDTH-1:0] rd_data_rise, |
---|
| 99 | input [DQ_WIDTH-1:0] rd_data_fall, |
---|
| 100 | input calib_ref_done, |
---|
| 101 | output reg [3:0] calib_done, |
---|
| 102 | output reg calib_ref_req, |
---|
| 103 | output [DQS_WIDTH-1:0] calib_rden, |
---|
| 104 | output reg [DQS_WIDTH-1:0] calib_rden_sel, |
---|
| 105 | output reg dlyrst_dq, |
---|
| 106 | output reg [DQ_WIDTH-1:0] dlyce_dq, |
---|
| 107 | output reg [DQ_WIDTH-1:0] dlyinc_dq, |
---|
| 108 | output reg dlyrst_dqs, |
---|
| 109 | output reg [DQS_WIDTH-1:0] dlyce_dqs, |
---|
| 110 | output reg [DQS_WIDTH-1:0] dlyinc_dqs, |
---|
| 111 | output reg [DQS_WIDTH-1:0] dlyrst_gate, |
---|
| 112 | output reg [DQS_WIDTH-1:0] dlyce_gate, |
---|
| 113 | output reg [DQS_WIDTH-1:0] dlyinc_gate, |
---|
| 114 | //(* XIL_PAR_NO_REG_ORDER = "TRUE", XIL_PAR_PATH="Q->u_iodelay_dq_ce.DATAIN", syn_keep = "1", keep = "TRUE"*) |
---|
| 115 | output [DQS_WIDTH-1:0] en_dqs, |
---|
| 116 | output [DQS_WIDTH-1:0] rd_data_sel, |
---|
| 117 | // Debug signals (optional use) |
---|
| 118 | input dbg_idel_up_all, |
---|
| 119 | input dbg_idel_down_all, |
---|
| 120 | input dbg_idel_up_dq, |
---|
| 121 | input dbg_idel_down_dq, |
---|
| 122 | input dbg_idel_up_dqs, |
---|
| 123 | input dbg_idel_down_dqs, |
---|
| 124 | input dbg_idel_up_gate, |
---|
| 125 | input dbg_idel_down_gate, |
---|
| 126 | input [DQ_BITS-1:0] dbg_sel_idel_dq, |
---|
| 127 | input dbg_sel_all_idel_dq, |
---|
| 128 | input [DQS_BITS:0] dbg_sel_idel_dqs, |
---|
| 129 | input dbg_sel_all_idel_dqs, |
---|
| 130 | input [DQS_BITS:0] dbg_sel_idel_gate, |
---|
| 131 | input dbg_sel_all_idel_gate, |
---|
| 132 | output [3:0] dbg_calib_done, |
---|
| 133 | output [3:0] dbg_calib_err, |
---|
| 134 | output [(6*DQ_WIDTH)-1:0] dbg_calib_dq_tap_cnt, |
---|
| 135 | output [(6*DQS_WIDTH)-1:0] dbg_calib_dqs_tap_cnt, |
---|
| 136 | output [(6*DQS_WIDTH)-1:0] dbg_calib_gate_tap_cnt, |
---|
| 137 | output [DQS_WIDTH-1:0] dbg_calib_rd_data_sel, |
---|
| 138 | output [(5*DQS_WIDTH)-1:0] dbg_calib_rden_dly, |
---|
| 139 | output [(5*DQS_WIDTH)-1:0] dbg_calib_gate_dly |
---|
| 140 | ); |
---|
| 141 | |
---|
| 142 | // minimum time (in IDELAY taps) for which capture data must be stable for |
---|
| 143 | // algorithm to consider |
---|
| 144 | localparam MIN_WIN_SIZE = 5; |
---|
| 145 | // IDEL_SET_VAL = (# of cycles - 1) to wait after changing IDELAY value |
---|
| 146 | // we only have to wait enough for input with new IDELAY value to |
---|
| 147 | // propagate through pipeline stages. |
---|
| 148 | localparam IDEL_SET_VAL = 3'b111; |
---|
| 149 | // # of clock cycles to delay read enable to determine if read data pattern |
---|
| 150 | // is correct for stage 3/4 (RDEN, DQS gate) calibration |
---|
| 151 | localparam CALIB_RDEN_PIPE_LEN = 31; |
---|
| 152 | // translate CAS latency into number of clock cycles for read valid delay |
---|
| 153 | // determination. Really only needed for CL = 2.5 (set to 2) |
---|
| 154 | localparam CAS_LAT_RDEN = (CAS_LAT == 25) ? 2 : CAS_LAT; |
---|
| 155 | // an SRL32 is used to delay CTRL_RDEN to generate read valid signal. This |
---|
| 156 | // is min possible value delay through SRL32 can be |
---|
| 157 | localparam RDEN_BASE_DELAY = CAS_LAT_RDEN + ADDITIVE_LAT + REG_ENABLE; |
---|
| 158 | // an SRL32 is used to delay the CTRL_RDEN from the read postamble DQS |
---|
| 159 | // gate. This is min possible value the SRL32 delay can be: |
---|
| 160 | // - Delay from end of deassertion of CTRL_RDEN to last falling edge of |
---|
| 161 | // read burst = 3.5 (CTRL_RDEN -> CAS delay) + 3 (min CAS latency) = 6.5 |
---|
| 162 | // - Minimum time for DQS gate circuit to be generated: |
---|
| 163 | // * 1 cyc to register CTRL_RDEN from controller |
---|
| 164 | // * 1 cyc after RDEN_CTRL falling edge |
---|
| 165 | // * 1 cyc min through SRL32 |
---|
| 166 | // * 1 cyc through SRL32 output flop |
---|
| 167 | // * 0 (<1) cyc of synchronization to DQS domain via IDELAY |
---|
| 168 | // * 1 cyc of delay through IDDR to generate CE to DQ IDDR's |
---|
| 169 | // Total = 5 cyc < 6.5 cycles |
---|
| 170 | // The total should be less than 5.5 cycles to account prop delays |
---|
| 171 | // adding one cycle to the synchronization time via the IDELAY. |
---|
| 172 | // NOTE: Value differs because of optional pipeline register added |
---|
| 173 | // for case of RDEN_BASE_DELAY > 3 to improve timing |
---|
| 174 | localparam GATE_BASE_DELAY = RDEN_BASE_DELAY - 3; |
---|
| 175 | localparam GATE_BASE_INIT = (GATE_BASE_DELAY <= 1) ? 0 : GATE_BASE_DELAY; |
---|
| 176 | // used for RDEN calibration: difference between shift value used during |
---|
| 177 | // calibration, and shift value for actual RDEN SRL. Only applies when |
---|
| 178 | // RDEN edge is immediately captured by CLKDIV0. If not (depends on phase |
---|
| 179 | // of CLK0 and CLKDIV0 when RDEN is asserted), then add 1 to this value. |
---|
| 180 | localparam CAL3_RDEN_SRL_DLY_DELTA = 6; |
---|
| 181 | // fix minimum value of DQS to be 1 to handle the case where's there's only |
---|
| 182 | // one DQS group. We could also enforce that user always inputs minimum |
---|
| 183 | // value of 1 for DQS_BITS (even when DQS_WIDTH=1). Leave this as safeguard |
---|
| 184 | // Assume we don't have to do this for DQ, DQ_WIDTH always > 1 |
---|
| 185 | localparam DQS_BITS_FIX = (DQS_BITS == 0) ? 1 : DQS_BITS; |
---|
| 186 | // how many taps to "pre-delay" DQ before stg 1 calibration - not needed for |
---|
| 187 | // current calibration, but leave for debug |
---|
| 188 | localparam DQ_IDEL_INIT = 6'b000000; |
---|
| 189 | // # IDELAY taps per bit time (i.e. half cycle). Limit to 63. |
---|
| 190 | localparam integer BIT_TIME_TAPS = (CLK_PERIOD/150 < 64) ? |
---|
| 191 | CLK_PERIOD/150 : 63; |
---|
| 192 | |
---|
| 193 | // used in various places during stage 4 cal: (1) determines maximum taps |
---|
| 194 | // to increment when finding right edge, (2) amount to decrement after |
---|
| 195 | // finding left edge, (3) amount to increment after finding right edge |
---|
| 196 | localparam CAL4_IDEL_BIT_VAL = (BIT_TIME_TAPS >= 6'b100000) ? |
---|
| 197 | 6'b100000 : BIT_TIME_TAPS; |
---|
| 198 | |
---|
| 199 | localparam CAL1_IDLE = 4'h0; |
---|
| 200 | localparam CAL1_INIT = 4'h1; |
---|
| 201 | localparam CAL1_INC_IDEL = 4'h2; |
---|
| 202 | localparam CAL1_FIND_FIRST_EDGE = 4'h3; |
---|
| 203 | localparam CAL1_FIRST_EDGE_IDEL_WAIT = 4'h4; |
---|
| 204 | localparam CAL1_FOUND_FIRST_EDGE_WAIT = 4'h5; |
---|
| 205 | localparam CAL1_FIND_SECOND_EDGE = 4'h6; |
---|
| 206 | localparam CAL1_SECOND_EDGE_IDEL_WAIT = 4'h7; |
---|
| 207 | localparam CAL1_CALC_IDEL = 4'h8; |
---|
| 208 | localparam CAL1_DEC_IDEL = 4'h9; |
---|
| 209 | localparam CAL1_DONE = 4'hA; |
---|
| 210 | |
---|
| 211 | localparam CAL2_IDLE = 4'h0; |
---|
| 212 | localparam CAL2_INIT = 4'h1; |
---|
| 213 | localparam CAL2_INIT_IDEL_WAIT = 4'h2; |
---|
| 214 | localparam CAL2_FIND_EDGE_POS = 4'h3; |
---|
| 215 | localparam CAL2_FIND_EDGE_IDEL_WAIT_POS = 4'h4; |
---|
| 216 | localparam CAL2_FIND_EDGE_NEG = 4'h5; |
---|
| 217 | localparam CAL2_FIND_EDGE_IDEL_WAIT_NEG = 4'h6; |
---|
| 218 | localparam CAL2_DEC_IDEL = 4'h7; |
---|
| 219 | localparam CAL2_DONE = 4'h8; |
---|
| 220 | |
---|
| 221 | localparam CAL3_IDLE = 3'h0; |
---|
| 222 | localparam CAL3_INIT = 3'h1; |
---|
| 223 | localparam CAL3_DETECT = 3'h2; |
---|
| 224 | localparam CAL3_RDEN_PIPE_CLR_WAIT = 3'h3; |
---|
| 225 | localparam CAL3_DONE = 3'h4; |
---|
| 226 | |
---|
| 227 | localparam CAL4_IDLE = 3'h0; |
---|
| 228 | localparam CAL4_INIT = 3'h1; |
---|
| 229 | localparam CAL4_FIND_WINDOW = 3'h2; |
---|
| 230 | localparam CAL4_FIND_EDGE = 3'h3; |
---|
| 231 | localparam CAL4_IDEL_WAIT = 3'h4; |
---|
| 232 | localparam CAL4_RDEN_PIPE_CLR_WAIT = 3'h5; |
---|
| 233 | localparam CAL4_ADJ_IDEL = 3'h6; |
---|
| 234 | localparam CAL4_DONE = 3'h7; |
---|
| 235 | |
---|
| 236 | integer i, j; |
---|
| 237 | |
---|
| 238 | reg [5:0] cal1_bit_time_tap_cnt; |
---|
| 239 | reg [1:0] cal1_data_chk_last; |
---|
| 240 | reg cal1_data_chk_last_valid; |
---|
| 241 | reg [1:0] cal1_data_chk_r; |
---|
| 242 | reg cal1_dlyce_dq; |
---|
| 243 | reg cal1_dlyinc_dq; |
---|
| 244 | reg cal1_dqs_dq_init_phase; |
---|
| 245 | reg cal1_detect_edge; |
---|
| 246 | reg cal1_detect_stable; |
---|
| 247 | reg cal1_found_second_edge; |
---|
| 248 | reg cal1_found_rising; |
---|
| 249 | reg cal1_found_window; |
---|
| 250 | reg cal1_first_edge_done; |
---|
| 251 | reg [5:0] cal1_first_edge_tap_cnt; |
---|
| 252 | reg [6:0] cal1_idel_dec_cnt; |
---|
| 253 | reg [5:0] cal1_idel_inc_cnt; |
---|
| 254 | reg [5:0] cal1_idel_max_tap; |
---|
| 255 | reg cal1_idel_max_tap_we; |
---|
| 256 | reg [5:0] cal1_idel_tap_cnt; |
---|
| 257 | reg cal1_idel_tap_limit_hit; |
---|
| 258 | reg [6:0] cal1_low_freq_idel_dec; |
---|
| 259 | reg cal1_ref_req; |
---|
| 260 | wire cal1_refresh; |
---|
| 261 | reg [3:0] cal1_state; |
---|
| 262 | reg [3:0] cal1_window_cnt; |
---|
| 263 | reg cal2_curr_sel; |
---|
| 264 | wire cal2_detect_edge; |
---|
| 265 | reg cal2_dlyce_dqs; |
---|
| 266 | reg cal2_dlyinc_dqs; |
---|
| 267 | reg [5:0] cal2_idel_dec_cnt; |
---|
| 268 | reg [5:0] cal2_idel_tap_cnt; |
---|
| 269 | reg [5:0] cal2_idel_tap_limit; |
---|
| 270 | reg cal2_idel_tap_limit_hit; |
---|
| 271 | reg cal2_rd_data_fall_last_neg; |
---|
| 272 | reg cal2_rd_data_fall_last_pos; |
---|
| 273 | reg cal2_rd_data_last_valid_neg; |
---|
| 274 | reg cal2_rd_data_last_valid_pos; |
---|
| 275 | reg cal2_rd_data_rise_last_neg; |
---|
| 276 | reg cal2_rd_data_rise_last_pos; |
---|
| 277 | reg [DQS_WIDTH-1:0] cal2_rd_data_sel; |
---|
| 278 | wire cal2_rd_data_sel_edge; |
---|
| 279 | reg [DQS_WIDTH-1:0] cal2_rd_data_sel_r; |
---|
| 280 | reg cal2_ref_req; |
---|
| 281 | reg [3:0] cal2_state; |
---|
| 282 | reg cal3_data_match; |
---|
| 283 | reg cal3_data_match_stgd; |
---|
| 284 | wire cal3_data_valid; |
---|
| 285 | wire cal3_match_found; |
---|
| 286 | wire [4:0] cal3_rden_dly; |
---|
| 287 | reg [4:0] cal3_rden_srl_a; |
---|
| 288 | reg [2:0] cal3_state; |
---|
| 289 | wire cal4_data_good; |
---|
| 290 | reg cal4_data_match; |
---|
| 291 | reg cal4_data_match_stgd; |
---|
| 292 | wire cal4_data_valid; |
---|
| 293 | reg cal4_dlyce_gate; |
---|
| 294 | reg cal4_dlyinc_gate; |
---|
| 295 | reg cal4_dlyrst_gate; |
---|
| 296 | reg [4:0] cal4_gate_srl_a; |
---|
| 297 | reg [5:0] cal4_idel_adj_cnt; |
---|
| 298 | reg cal4_idel_adj_inc; |
---|
| 299 | reg cal4_idel_bit_tap; |
---|
| 300 | reg [5:0] cal4_idel_tap_cnt; |
---|
| 301 | reg cal4_idel_max_tap; |
---|
| 302 | reg [4:0] cal4_rden_srl_a; |
---|
| 303 | reg cal4_ref_req; |
---|
| 304 | reg cal4_seek_left; |
---|
| 305 | reg cal4_stable_window; |
---|
| 306 | reg [2:0] cal4_state; |
---|
| 307 | reg [3:0] cal4_window_cnt; |
---|
| 308 | reg [3:0] calib_done_tmp; // only for stg1/2/4 |
---|
| 309 | reg calib_ctrl_gate_pulse_r; |
---|
| 310 | reg calib_ctrl_rden; |
---|
| 311 | reg calib_ctrl_rden_r; |
---|
| 312 | wire calib_ctrl_rden_negedge; |
---|
| 313 | reg calib_ctrl_rden_negedge_r; |
---|
| 314 | reg [3:0] calib_done_r; |
---|
| 315 | reg [3:0] calib_err; |
---|
| 316 | reg [1:0] calib_err_2; |
---|
| 317 | wire calib_init_gate_pulse; |
---|
| 318 | reg calib_init_gate_pulse_r; |
---|
| 319 | reg calib_init_gate_pulse_r1; |
---|
| 320 | reg calib_init_rden; |
---|
| 321 | reg calib_init_rden_r; |
---|
| 322 | reg [4:0] calib_rden_srl_a; |
---|
| 323 | wire [4:0] calib_rden_srl_a_r; |
---|
| 324 | reg [(5*DQS_WIDTH)-1:0] calib_rden_dly; |
---|
| 325 | reg calib_rden_edge_r; |
---|
| 326 | reg [4:0] calib_rden_pipe_cnt; |
---|
| 327 | wire calib_rden_srl_out; |
---|
| 328 | wire calib_rden_srl_out_r; |
---|
| 329 | reg calib_rden_srl_out_r1; |
---|
| 330 | reg calib_rden_valid; |
---|
| 331 | reg calib_rden_valid_stgd; |
---|
| 332 | reg [DQ_BITS-1:0] count_dq; |
---|
| 333 | reg [DQS_BITS_FIX-1:0] count_dqs; |
---|
| 334 | reg [DQS_BITS_FIX-1:0] count_gate; |
---|
| 335 | reg [DQS_BITS_FIX-1:0] count_rden; |
---|
| 336 | reg ctrl_rden_r; |
---|
| 337 | wire dlyce_or; |
---|
| 338 | reg [(5*DQS_WIDTH)-1:0] gate_dly; |
---|
| 339 | wire [(5*DQS_WIDTH)-1:0] gate_dly_r; |
---|
| 340 | wire gate_srl_in; |
---|
| 341 | wire [DQS_WIDTH-1:0] gate_srl_out; |
---|
| 342 | wire [DQS_WIDTH-1:0] gate_srl_out_r; |
---|
| 343 | reg [2:0] idel_set_cnt; |
---|
| 344 | wire idel_set_wait; |
---|
| 345 | reg [DQ_BITS-1:0] next_count_dq; |
---|
| 346 | reg [DQS_BITS_FIX-1:0] next_count_dqs; |
---|
| 347 | reg [DQS_BITS_FIX-1:0] next_count_gate; |
---|
| 348 | reg phy_init_rden_r; |
---|
| 349 | reg phy_init_rden_r1; |
---|
| 350 | reg [DQS_WIDTH-1:0] rd_data_fall_1x_bit1_r1; |
---|
| 351 | reg [DQ_WIDTH-1:0] rd_data_fall_1x_r; |
---|
| 352 | reg [DQS_WIDTH-1:0] rd_data_fall_1x_r1; |
---|
| 353 | reg [DQS_WIDTH-1:0] rd_data_fall_2x_bit1_r; |
---|
| 354 | reg [DQS_WIDTH-1:0] rd_data_fall_2x_r; |
---|
| 355 | wire [DQS_WIDTH-1:0] rd_data_fall_chk_q1; |
---|
| 356 | wire [DQS_WIDTH-1:0] rd_data_fall_chk_q1_bit1; |
---|
| 357 | wire [DQS_WIDTH-1:0] rd_data_fall_chk_q2; |
---|
| 358 | wire [DQS_WIDTH-1:0] rd_data_fall_chk_q2_bit1; |
---|
| 359 | reg [DQS_WIDTH-1:0] rd_data_rise_1x_bit1_r1; |
---|
| 360 | reg [DQ_WIDTH-1:0] rd_data_rise_1x_r; |
---|
| 361 | reg [DQS_WIDTH-1:0] rd_data_rise_1x_r1; |
---|
| 362 | reg [DQS_WIDTH-1:0] rd_data_rise_2x_bit1_r; |
---|
| 363 | reg [DQS_WIDTH-1:0] rd_data_rise_2x_r; |
---|
| 364 | wire [DQS_WIDTH-1:0] rd_data_rise_chk_q1; |
---|
| 365 | wire [DQS_WIDTH-1:0] rd_data_rise_chk_q1_bit1; |
---|
| 366 | wire [DQS_WIDTH-1:0] rd_data_rise_chk_q2; |
---|
| 367 | wire [DQS_WIDTH-1:0] rd_data_rise_chk_q2_bit1; |
---|
| 368 | reg rdd_fall_q1; |
---|
| 369 | reg rdd_fall_q1_bit1; |
---|
| 370 | reg rdd_fall_q1_bit1_r; |
---|
| 371 | reg rdd_fall_q1_bit1_r1; |
---|
| 372 | reg rdd_fall_q1_r; |
---|
| 373 | reg rdd_fall_q1_r1; |
---|
| 374 | reg rdd_fall_q2; |
---|
| 375 | reg rdd_fall_q2_bit1; |
---|
| 376 | reg rdd_fall_q2_bit1_r; |
---|
| 377 | reg rdd_fall_q2_r; |
---|
| 378 | reg rdd_rise_q1; |
---|
| 379 | reg rdd_rise_q1_bit1; |
---|
| 380 | reg rdd_rise_q1_bit1_r; |
---|
| 381 | reg rdd_rise_q1_bit1_r1; |
---|
| 382 | reg rdd_rise_q1_r; |
---|
| 383 | reg rdd_rise_q1_r1; |
---|
| 384 | reg rdd_rise_q2; |
---|
| 385 | reg rdd_rise_q2_bit1; |
---|
| 386 | reg rdd_rise_q2_bit1_r; |
---|
| 387 | reg rdd_rise_q2_r; |
---|
| 388 | reg [DQS_BITS_FIX-1:0] rdd_mux_sel; |
---|
| 389 | reg rden_dec; |
---|
| 390 | reg [(5*DQS_WIDTH)-1:0] rden_dly; |
---|
| 391 | wire [(5*DQS_WIDTH)-1:0] rden_dly_r; |
---|
| 392 | reg [4:0] rden_dly_0; |
---|
| 393 | reg rden_inc; |
---|
| 394 | reg [DQS_WIDTH-1:0] rden_mux; |
---|
| 395 | wire [DQS_WIDTH-1:0] rden_srl_out; |
---|
| 396 | |
---|
| 397 | // Debug |
---|
| 398 | integer x; |
---|
| 399 | reg [5:0] dbg_dq_tap_cnt [DQ_WIDTH-1:0]; |
---|
| 400 | reg [5:0] dbg_dqs_tap_cnt [DQS_WIDTH-1:0]; |
---|
| 401 | reg [5:0] dbg_gate_tap_cnt [DQS_WIDTH-1:0]; |
---|
| 402 | |
---|
| 403 | //*************************************************************************** |
---|
| 404 | // Debug output ("dbg_phy_calib_*") |
---|
| 405 | // NOTES: |
---|
| 406 | // 1. All debug outputs coming out of PHY_CALIB are clocked off CLKDIV0, |
---|
| 407 | // although they are also static after calibration is complete. This |
---|
| 408 | // means the user can either connect them to a Chipscope ILA, or to |
---|
| 409 | // either a sync/async VIO input block. Using an async VIO has the |
---|
| 410 | // advantage of not requiring these paths to meet cycle-to-cycle timing. |
---|
| 411 | // 2. The widths of most of these debug buses are dependent on the # of |
---|
| 412 | // DQS/DQ bits (e.g. dq_tap_cnt width = 6 * (# of DQ bits) |
---|
| 413 | // SIGNAL DESCRIPTION: |
---|
| 414 | // 1. calib_done: 4 bits - each one asserted as each phase of calibration |
---|
| 415 | // is completed. |
---|
| 416 | // 2. calib_err: 4 bits - each one asserted when a calibration error |
---|
| 417 | // encountered for that stage. Some of these bits may not |
---|
| 418 | // be used (not all cal stages report an error). |
---|
| 419 | // 3. dq_tap_cnt: final IDELAY tap counts for all DQ IDELAYs |
---|
| 420 | // 4. dqs_tap_cnt: final IDELAY tap counts for all DQS IDELAYs |
---|
| 421 | // 5. gate_tap_cnt: final IDELAY tap counts for all DQS gate |
---|
| 422 | // synchronization IDELAYs |
---|
| 423 | // 6. rd_data_sel: final read capture MUX (either "positive" or "negative" |
---|
| 424 | // edge capture) settings for all DQS groups |
---|
| 425 | // 7. rden_dly: related to # of cycles after issuing a read until when |
---|
| 426 | // read data is valid - for all DQS groups |
---|
| 427 | // 8. gate_dly: related to # of cycles after issuing a read until when |
---|
| 428 | // clock enable for all DQ's is deasserted to prevent |
---|
| 429 | // effect of DQS postamble glitch - for all DQS groups |
---|
| 430 | //*************************************************************************** |
---|
| 431 | |
---|
| 432 | //***************************************************************** |
---|
| 433 | // Record IDELAY tap values by "snooping" IDELAY control signals |
---|
| 434 | //***************************************************************** |
---|
| 435 | |
---|
| 436 | // record DQ IDELAY tap values |
---|
| 437 | genvar dbg_dq_tc_i; |
---|
| 438 | generate |
---|
| 439 | for (dbg_dq_tc_i = 0; dbg_dq_tc_i < DQ_WIDTH; |
---|
| 440 | dbg_dq_tc_i = dbg_dq_tc_i + 1) begin: gen_dbg_dq_tap_cnt |
---|
| 441 | assign dbg_calib_dq_tap_cnt[(6*dbg_dq_tc_i)+5:(6*dbg_dq_tc_i)] |
---|
| 442 | = dbg_dq_tap_cnt[dbg_dq_tc_i]; |
---|
| 443 | always @(posedge clkdiv) |
---|
| 444 | if (rstdiv | dlyrst_dq) |
---|
| 445 | dbg_dq_tap_cnt[dbg_dq_tc_i] <= 6'b000000; |
---|
| 446 | else |
---|
| 447 | if (dlyce_dq[dbg_dq_tc_i]) |
---|
| 448 | if (dlyinc_dq[dbg_dq_tc_i]) |
---|
| 449 | dbg_dq_tap_cnt[dbg_dq_tc_i] |
---|
| 450 | <= dbg_dq_tap_cnt[dbg_dq_tc_i] + 1; |
---|
| 451 | else |
---|
| 452 | dbg_dq_tap_cnt[dbg_dq_tc_i] |
---|
| 453 | <= dbg_dq_tap_cnt[dbg_dq_tc_i] - 1; |
---|
| 454 | end |
---|
| 455 | endgenerate |
---|
| 456 | |
---|
| 457 | // record DQS IDELAY tap values |
---|
| 458 | genvar dbg_dqs_tc_i; |
---|
| 459 | generate |
---|
| 460 | for (dbg_dqs_tc_i = 0; dbg_dqs_tc_i < DQS_WIDTH; |
---|
| 461 | dbg_dqs_tc_i = dbg_dqs_tc_i + 1) begin: gen_dbg_dqs_tap_cnt |
---|
| 462 | assign dbg_calib_dqs_tap_cnt[(6*dbg_dqs_tc_i)+5:(6*dbg_dqs_tc_i)] |
---|
| 463 | = dbg_dqs_tap_cnt[dbg_dqs_tc_i]; |
---|
| 464 | always @(posedge clkdiv) |
---|
| 465 | if (rstdiv | dlyrst_dqs) |
---|
| 466 | dbg_dqs_tap_cnt[dbg_dqs_tc_i] <= 6'b000000; |
---|
| 467 | else |
---|
| 468 | if (dlyce_dqs[dbg_dqs_tc_i]) |
---|
| 469 | if (dlyinc_dqs[dbg_dqs_tc_i]) |
---|
| 470 | dbg_dqs_tap_cnt[dbg_dqs_tc_i] |
---|
| 471 | <= dbg_dqs_tap_cnt[dbg_dqs_tc_i] + 1; |
---|
| 472 | else |
---|
| 473 | dbg_dqs_tap_cnt[dbg_dqs_tc_i] |
---|
| 474 | <= dbg_dqs_tap_cnt[dbg_dqs_tc_i] - 1; |
---|
| 475 | end |
---|
| 476 | endgenerate |
---|
| 477 | |
---|
| 478 | // record DQS gate IDELAY tap values |
---|
| 479 | genvar dbg_gate_tc_i; |
---|
| 480 | generate |
---|
| 481 | for (dbg_gate_tc_i = 0; dbg_gate_tc_i < DQS_WIDTH; |
---|
| 482 | dbg_gate_tc_i = dbg_gate_tc_i + 1) begin: gen_dbg_gate_tap_cnt |
---|
| 483 | assign dbg_calib_gate_tap_cnt[(6*dbg_gate_tc_i)+5:(6*dbg_gate_tc_i)] |
---|
| 484 | = dbg_gate_tap_cnt[dbg_gate_tc_i]; |
---|
| 485 | always @(posedge clkdiv) |
---|
| 486 | if (rstdiv | dlyrst_gate[dbg_gate_tc_i]) |
---|
| 487 | dbg_gate_tap_cnt[dbg_gate_tc_i] <= 6'b000000; |
---|
| 488 | else |
---|
| 489 | if (dlyce_gate[dbg_gate_tc_i]) |
---|
| 490 | if (dlyinc_gate[dbg_gate_tc_i]) |
---|
| 491 | dbg_gate_tap_cnt[dbg_gate_tc_i] |
---|
| 492 | <= dbg_gate_tap_cnt[dbg_gate_tc_i] + 1; |
---|
| 493 | else |
---|
| 494 | dbg_gate_tap_cnt[dbg_gate_tc_i] |
---|
| 495 | <= dbg_gate_tap_cnt[dbg_gate_tc_i] - 1; |
---|
| 496 | end |
---|
| 497 | endgenerate |
---|
| 498 | |
---|
| 499 | assign dbg_calib_done = calib_done; |
---|
| 500 | assign dbg_calib_err = calib_err; |
---|
| 501 | assign dbg_calib_rd_data_sel = cal2_rd_data_sel; |
---|
| 502 | assign dbg_calib_rden_dly = rden_dly; |
---|
| 503 | assign dbg_calib_gate_dly = gate_dly; |
---|
| 504 | |
---|
| 505 | //*************************************************************************** |
---|
| 506 | // Read data pipelining, and read data "ISERDES" data width expansion |
---|
| 507 | //*************************************************************************** |
---|
| 508 | |
---|
| 509 | // For all data bits, register incoming capture data to slow clock to improve |
---|
| 510 | // timing. Adding single pipeline stage does not affect functionality (as |
---|
| 511 | // long as we make sure to wait extra clock cycle after changing DQ IDELAY) |
---|
| 512 | // Also note in this case that we're "missing" every other clock cycle's |
---|
| 513 | // worth of data capture since we're sync'ing to the slow clock. This is |
---|
| 514 | // fine for stage 1 and stage 2 cal, but not for stage 3 and 4 (see below |
---|
| 515 | // for different circuit to handle those stages) |
---|
| 516 | always @(posedge clkdiv) begin |
---|
| 517 | rd_data_rise_1x_r <= rd_data_rise; |
---|
| 518 | rd_data_fall_1x_r <= rd_data_fall; |
---|
| 519 | end |
---|
| 520 | |
---|
| 521 | // For every DQ_PER_DQS bit, generate what is essentially a ISERDES-type |
---|
| 522 | // data width expander. Will need this for stage 3 and 4 cal, where we need |
---|
| 523 | // to compare data over consecutive clock cycles. We can also use this for |
---|
| 524 | // stage 2 as well (stage 2 doesn't require every bit to be looked at, only |
---|
| 525 | // one bit per DQS group) |
---|
| 526 | // MIG 3.3: Expand to use lower two bits of each DQS group - use for stage |
---|
| 527 | // 3 calibration for added robustness, since we will be checking for the |
---|
| 528 | // training pattern from the memory even when the data bus is 3-stated. |
---|
| 529 | // Theoretically it is possible for whatever garbage data is on the bus |
---|
| 530 | // to be interpreted as the training sequence, although this can be made |
---|
| 531 | // very unlikely by the choice of training sequence (bit sequence, length) |
---|
| 532 | // and the number of bits compared for each DQS group. |
---|
| 533 | genvar rdd_i; |
---|
| 534 | generate |
---|
| 535 | for (rdd_i = 0; rdd_i < DQS_WIDTH; rdd_i = rdd_i + 1) begin: gen_rdd |
---|
| 536 | // first stage: keep data in fast clk domain. Store data over two |
---|
| 537 | // consecutive clock cycles for rise/fall data for proper transfer |
---|
| 538 | // to slow clock domain |
---|
| 539 | always @(posedge clk) begin |
---|
| 540 | rd_data_rise_2x_r[rdd_i] <= rd_data_rise[(rdd_i*DQ_PER_DQS)]; |
---|
| 541 | rd_data_fall_2x_r[rdd_i] <= rd_data_fall[(rdd_i*DQ_PER_DQS)]; |
---|
| 542 | rd_data_rise_2x_bit1_r[rdd_i] <= rd_data_rise[(rdd_i*DQ_PER_DQS)+1]; |
---|
| 543 | rd_data_fall_2x_bit1_r[rdd_i] <= rd_data_fall[(rdd_i*DQ_PER_DQS)+1]; |
---|
| 544 | end |
---|
| 545 | // second stage, register first stage to slow clock domain, 2nd stage |
---|
| 546 | // consists of both these flops, and the rd_data_rise_1x_r flops |
---|
| 547 | always @(posedge clkdiv) begin |
---|
| 548 | rd_data_rise_1x_r1[rdd_i] <= rd_data_rise_2x_r[rdd_i]; |
---|
| 549 | rd_data_fall_1x_r1[rdd_i] <= rd_data_fall_2x_r[rdd_i]; |
---|
| 550 | rd_data_rise_1x_bit1_r1[rdd_i] <= rd_data_rise_2x_bit1_r[rdd_i]; |
---|
| 551 | rd_data_fall_1x_bit1_r1[rdd_i] <= rd_data_fall_2x_bit1_r[rdd_i]; |
---|
| 552 | end |
---|
| 553 | // now we have four outputs - representing rise/fall outputs over last |
---|
| 554 | // 2 fast clock cycles. However, the ordering these represent can either |
---|
| 555 | // be: (1) Q2 = data @ time = n, Q1 = data @ time = n+1, or (2) |
---|
| 556 | // Q2 = data @ time = n - 1, Q1 = data @ time = n (and data at [Q1,Q2] |
---|
| 557 | // is "staggered") - leave it up to the stage of calibration using this |
---|
| 558 | // to figure out which is which, if they care at all (e.g. stage 2 cal |
---|
| 559 | // doesn't care about the ordering) |
---|
| 560 | assign rd_data_rise_chk_q1[rdd_i] |
---|
| 561 | = rd_data_rise_1x_r[(rdd_i*DQ_PER_DQS)]; |
---|
| 562 | assign rd_data_rise_chk_q2[rdd_i] |
---|
| 563 | = rd_data_rise_1x_r1[rdd_i]; |
---|
| 564 | assign rd_data_fall_chk_q1[rdd_i] |
---|
| 565 | = rd_data_fall_1x_r[(rdd_i*DQ_PER_DQS)]; |
---|
| 566 | assign rd_data_fall_chk_q2[rdd_i] |
---|
| 567 | = rd_data_fall_1x_r1[rdd_i]; |
---|
| 568 | // MIG 3.3: Added comparison for second bit in DQS group for stage 3 cal |
---|
| 569 | assign rd_data_rise_chk_q1_bit1[rdd_i] |
---|
| 570 | = rd_data_rise_1x_r[(rdd_i*DQ_PER_DQS)+1]; |
---|
| 571 | assign rd_data_rise_chk_q2_bit1[rdd_i] |
---|
| 572 | = rd_data_rise_1x_bit1_r1[rdd_i]; |
---|
| 573 | assign rd_data_fall_chk_q1_bit1[rdd_i] |
---|
| 574 | = rd_data_fall_1x_r[(rdd_i*DQ_PER_DQS)+1]; |
---|
| 575 | assign rd_data_fall_chk_q2_bit1[rdd_i] |
---|
| 576 | = rd_data_fall_1x_bit1_r1[rdd_i]; |
---|
| 577 | end |
---|
| 578 | endgenerate |
---|
| 579 | |
---|
| 580 | //***************************************************************** |
---|
| 581 | // Outputs of these simplified ISERDES circuits then feed MUXes based on |
---|
| 582 | // which DQ the current calibration algorithm needs to look at |
---|
| 583 | //***************************************************************** |
---|
| 584 | |
---|
| 585 | // generate MUX control; assume that adding an extra pipeline stage isn't |
---|
| 586 | // an issue - whatever stage cal logic is using output of MUX will wait |
---|
| 587 | // enough time after changing it |
---|
| 588 | always @(posedge clkdiv) begin |
---|
| 589 | (* full_case, parallel_case *) case (calib_done[2:0]) |
---|
| 590 | 3'b001: rdd_mux_sel <= next_count_dqs; |
---|
| 591 | 3'b011: rdd_mux_sel <= count_rden; |
---|
| 592 | 3'b111: rdd_mux_sel <= next_count_gate; |
---|
| 593 | default: rdd_mux_sel <= {DQS_BITS_FIX{1'bx}}; |
---|
| 594 | endcase |
---|
| 595 | end |
---|
| 596 | |
---|
| 597 | always @(posedge clkdiv) begin |
---|
| 598 | rdd_rise_q1 <= rd_data_rise_chk_q1[rdd_mux_sel]; |
---|
| 599 | rdd_rise_q2 <= rd_data_rise_chk_q2[rdd_mux_sel]; |
---|
| 600 | rdd_fall_q1 <= rd_data_fall_chk_q1[rdd_mux_sel]; |
---|
| 601 | rdd_fall_q2 <= rd_data_fall_chk_q2[rdd_mux_sel]; |
---|
| 602 | rdd_rise_q1_bit1 <= rd_data_rise_chk_q1_bit1[rdd_mux_sel]; |
---|
| 603 | rdd_rise_q2_bit1 <= rd_data_rise_chk_q2_bit1[rdd_mux_sel]; |
---|
| 604 | rdd_fall_q1_bit1 <= rd_data_fall_chk_q1_bit1[rdd_mux_sel]; |
---|
| 605 | rdd_fall_q2_bit1 <= rd_data_fall_chk_q2_bit1[rdd_mux_sel]; |
---|
| 606 | end |
---|
| 607 | |
---|
| 608 | //*************************************************************************** |
---|
| 609 | // Demultiplexor to control (reset, increment, decrement) IDELAY tap values |
---|
| 610 | // For DQ: |
---|
| 611 | // STG1: for per-bit-deskew, only inc/dec the current DQ. For non-per |
---|
| 612 | // deskew, increment all bits in the current DQS set |
---|
| 613 | // STG2: inc/dec all DQ's in the current DQS set. |
---|
| 614 | // NOTE: Nice to add some error checking logic here (or elsewhere in the |
---|
| 615 | // code) to check if logic attempts to overflow tap value |
---|
| 616 | //*************************************************************************** |
---|
| 617 | |
---|
| 618 | // don't use DLYRST to reset value of IDELAY after reset. Need to change this |
---|
| 619 | // if we want to allow user to recalibrate after initial reset |
---|
| 620 | always @(posedge clkdiv) |
---|
| 621 | if (rstdiv) begin |
---|
| 622 | dlyrst_dq <= 1'b1; |
---|
| 623 | dlyrst_dqs <= 1'b1; |
---|
| 624 | end else begin |
---|
| 625 | dlyrst_dq <= 1'b0; |
---|
| 626 | dlyrst_dqs <= 1'b0; |
---|
| 627 | end |
---|
| 628 | |
---|
| 629 | always @(posedge clkdiv) begin |
---|
| 630 | if (rstdiv) begin |
---|
| 631 | dlyce_dq <= 'b0; |
---|
| 632 | dlyinc_dq <= 'b0; |
---|
| 633 | dlyce_dqs <= 'b0; |
---|
| 634 | dlyinc_dqs <= 'b0; |
---|
| 635 | end else begin |
---|
| 636 | dlyce_dq <= 'b0; |
---|
| 637 | dlyinc_dq <= 'b0; |
---|
| 638 | dlyce_dqs <= 'b0; |
---|
| 639 | dlyinc_dqs <= 'b0; |
---|
| 640 | |
---|
| 641 | // stage 1 cal: change only specified DQ |
---|
| 642 | if (cal1_dlyce_dq) begin |
---|
| 643 | if (SIM_ONLY == 0) begin |
---|
| 644 | dlyce_dq[count_dq] <= 1'b1; |
---|
| 645 | dlyinc_dq[count_dq] <= cal1_dlyinc_dq; |
---|
| 646 | end else begin |
---|
| 647 | // if simulation, then calibrate only first DQ, apply results |
---|
| 648 | // to all DQs (i.e. assume delay on all DQs is the same) |
---|
| 649 | for (i = 0; i < DQ_WIDTH; i = i + 1) begin: loop_sim_dq_dly |
---|
| 650 | dlyce_dq[i] <= 1'b1; |
---|
| 651 | dlyinc_dq[i] <= cal1_dlyinc_dq; |
---|
| 652 | end |
---|
| 653 | end |
---|
| 654 | end else if (cal2_dlyce_dqs) begin |
---|
| 655 | // stage 2 cal: change DQS and all corresponding DQ's |
---|
| 656 | if (SIM_ONLY == 0) begin |
---|
| 657 | dlyce_dqs[count_dqs] <= 1'b1; |
---|
| 658 | dlyinc_dqs[count_dqs] <= cal2_dlyinc_dqs; |
---|
| 659 | for (i = 0; i < DQ_PER_DQS; i = i + 1) begin: loop_dqs_dly |
---|
| 660 | dlyce_dq[(DQ_PER_DQS*count_dqs)+i] <= 1'b1; |
---|
| 661 | dlyinc_dq[(DQ_PER_DQS*count_dqs)+i] <= cal2_dlyinc_dqs; |
---|
| 662 | end |
---|
| 663 | end else begin |
---|
| 664 | for (i = 0; i < DQS_WIDTH; i = i + 1) begin: loop_sim_dqs_dly |
---|
| 665 | // if simulation, then calibrate only first DQS |
---|
| 666 | dlyce_dqs[i] <= 1'b1; |
---|
| 667 | dlyinc_dqs[i] <= cal2_dlyinc_dqs; |
---|
| 668 | for (j = 0; j < DQ_PER_DQS; j = j + 1) begin: loop_sim_dq_dqs_dly |
---|
| 669 | dlyce_dq[(DQ_PER_DQS*i)+j] <= 1'b1; |
---|
| 670 | dlyinc_dq[(DQ_PER_DQS*i)+j] <= cal2_dlyinc_dqs; |
---|
| 671 | end |
---|
| 672 | end |
---|
| 673 | end |
---|
| 674 | end else if (DEBUG_EN != 0) begin |
---|
| 675 | // DEBUG: allow user to vary IDELAY tap settings |
---|
| 676 | // For DQ IDELAY taps |
---|
| 677 | if (dbg_idel_up_all || dbg_idel_down_all || |
---|
| 678 | dbg_sel_all_idel_dq) begin |
---|
| 679 | for (x = 0; x < DQ_WIDTH; x = x + 1) begin: loop_dly_inc_dq |
---|
| 680 | dlyce_dq[x] <= dbg_idel_up_all | dbg_idel_down_all | |
---|
| 681 | dbg_idel_up_dq | dbg_idel_down_dq; |
---|
| 682 | dlyinc_dq[x] <= dbg_idel_up_all | dbg_idel_up_dq; |
---|
| 683 | end |
---|
| 684 | end else begin |
---|
| 685 | dlyce_dq <= 'b0; |
---|
| 686 | dlyce_dq[dbg_sel_idel_dq] <= dbg_idel_up_dq | |
---|
| 687 | dbg_idel_down_dq; |
---|
| 688 | dlyinc_dq[dbg_sel_idel_dq] <= dbg_idel_up_dq; |
---|
| 689 | end |
---|
| 690 | // For DQS IDELAY taps |
---|
| 691 | if (dbg_idel_up_all || dbg_idel_down_all || |
---|
| 692 | dbg_sel_all_idel_dqs) begin |
---|
| 693 | for (x = 0; x < DQS_WIDTH; x = x + 1) begin: loop_dly_inc_dqs |
---|
| 694 | dlyce_dqs[x] <= dbg_idel_up_all | dbg_idel_down_all | |
---|
| 695 | dbg_idel_up_dqs | dbg_idel_down_dqs; |
---|
| 696 | dlyinc_dqs[x] <= dbg_idel_up_all | dbg_idel_up_dqs; |
---|
| 697 | end |
---|
| 698 | end else begin |
---|
| 699 | dlyce_dqs <= 'b0; |
---|
| 700 | dlyce_dqs[dbg_sel_idel_dqs] <= dbg_idel_up_dqs | |
---|
| 701 | dbg_idel_down_dqs; |
---|
| 702 | dlyinc_dqs[dbg_sel_idel_dqs] <= dbg_idel_up_dqs; |
---|
| 703 | end |
---|
| 704 | end |
---|
| 705 | end |
---|
| 706 | end |
---|
| 707 | |
---|
| 708 | // GATE synchronization is handled directly by Stage 4 calibration FSM |
---|
| 709 | always @(posedge clkdiv) |
---|
| 710 | if (rstdiv) begin |
---|
| 711 | dlyrst_gate <= {DQS_WIDTH{1'b1}}; |
---|
| 712 | dlyce_gate <= {DQS_WIDTH{1'b0}}; |
---|
| 713 | dlyinc_gate <= {DQS_WIDTH{1'b0}}; |
---|
| 714 | end else begin |
---|
| 715 | dlyrst_gate <= {DQS_WIDTH{1'b0}}; |
---|
| 716 | dlyce_gate <= {DQS_WIDTH{1'b0}}; |
---|
| 717 | dlyinc_gate <= {DQS_WIDTH{1'b0}}; |
---|
| 718 | |
---|
| 719 | if (cal4_dlyrst_gate) begin |
---|
| 720 | if (SIM_ONLY == 0) |
---|
| 721 | dlyrst_gate[count_gate] <= 1'b1; |
---|
| 722 | else |
---|
| 723 | for (i = 0; i < DQS_WIDTH; i = i + 1) begin: loop_gate_sim_dly_rst |
---|
| 724 | dlyrst_gate[i] <= 1'b1; |
---|
| 725 | end |
---|
| 726 | end |
---|
| 727 | |
---|
| 728 | if (cal4_dlyce_gate) begin |
---|
| 729 | if (SIM_ONLY == 0) begin |
---|
| 730 | dlyce_gate[count_gate] <= 1'b1; |
---|
| 731 | dlyinc_gate[count_gate] <= cal4_dlyinc_gate; |
---|
| 732 | end else begin |
---|
| 733 | // if simulation, then calibrate only first gate |
---|
| 734 | for (i = 0; i < DQS_WIDTH; i = i + 1) begin: loop_gate_sim_dly |
---|
| 735 | dlyce_gate[i] <= 1'b1; |
---|
| 736 | dlyinc_gate[i] <= cal4_dlyinc_gate; |
---|
| 737 | end |
---|
| 738 | end |
---|
| 739 | end else if (DEBUG_EN != 0) begin |
---|
| 740 | // DEBUG: allow user to vary IDELAY tap settings |
---|
| 741 | if (dbg_idel_up_all || dbg_idel_down_all || |
---|
| 742 | dbg_sel_all_idel_gate) begin |
---|
| 743 | for (x = 0; x < DQS_WIDTH; x = x + 1) begin: loop_dly_inc_gate |
---|
| 744 | dlyce_gate[x] <= dbg_idel_up_all | dbg_idel_down_all | |
---|
| 745 | dbg_idel_up_gate | dbg_idel_down_gate; |
---|
| 746 | dlyinc_gate[x] <= dbg_idel_up_all | dbg_idel_up_gate; |
---|
| 747 | end |
---|
| 748 | end else begin |
---|
| 749 | dlyce_gate <= {DQS_WIDTH{1'b0}}; |
---|
| 750 | dlyce_gate[dbg_sel_idel_gate] <= dbg_idel_up_gate | |
---|
| 751 | dbg_idel_down_gate; |
---|
| 752 | dlyinc_gate[dbg_sel_idel_gate] <= dbg_idel_up_gate; |
---|
| 753 | end |
---|
| 754 | end |
---|
| 755 | end |
---|
| 756 | |
---|
| 757 | //*************************************************************************** |
---|
| 758 | // signal to tell calibration state machines to wait and give IDELAY time to |
---|
| 759 | // settle after it's value is changed (both time for IDELAY chain to settle, |
---|
| 760 | // and for settled output to propagate through ISERDES). For general use: use |
---|
| 761 | // for any calibration state machines that modify any IDELAY. |
---|
| 762 | // Should give at least enough time for IDELAY output to settle (technically |
---|
| 763 | // for V5, this should be "glitchless" when IDELAY taps are changed, so don't |
---|
| 764 | // need any time here), and also time for new data to propagate through both |
---|
| 765 | // ISERDES and the "RDD" MUX + associated pipelining |
---|
| 766 | // For now, give very "generous" delay - doesn't really matter since only |
---|
| 767 | // needed during calibration |
---|
| 768 | //*************************************************************************** |
---|
| 769 | |
---|
| 770 | // determine if calibration polarity has changed |
---|
| 771 | always @(posedge clkdiv) |
---|
| 772 | cal2_rd_data_sel_r <= cal2_rd_data_sel; |
---|
| 773 | |
---|
| 774 | assign cal2_rd_data_sel_edge = |(cal2_rd_data_sel ^ cal2_rd_data_sel_r); |
---|
| 775 | |
---|
| 776 | // combine requests to modify any of the IDELAYs into one. Also when second |
---|
| 777 | // stage capture "edge" polarity is changed (IDELAY isn't changed in this |
---|
| 778 | // case, but use the same counter to stall cal logic) |
---|
| 779 | assign dlyce_or = cal1_dlyce_dq | |
---|
| 780 | cal2_dlyce_dqs | |
---|
| 781 | cal2_rd_data_sel_edge | |
---|
| 782 | cal4_dlyce_gate | |
---|
| 783 | cal4_dlyrst_gate; |
---|
| 784 | |
---|
| 785 | // SYN_NOTE: Can later recode to avoid combinational path |
---|
| 786 | assign idel_set_wait = dlyce_or || (idel_set_cnt != IDEL_SET_VAL); |
---|
| 787 | |
---|
| 788 | always @(posedge clkdiv) |
---|
| 789 | if (rstdiv) |
---|
| 790 | idel_set_cnt <= 4'b0000; |
---|
| 791 | else if (dlyce_or) |
---|
| 792 | idel_set_cnt <= 4'b0000; |
---|
| 793 | else if (idel_set_cnt != IDEL_SET_VAL) |
---|
| 794 | idel_set_cnt <= idel_set_cnt + 1; |
---|
| 795 | |
---|
| 796 | // generate request to PHY_INIT logic to issue auto-refresh |
---|
| 797 | // used by certain states to force prech/auto-refresh part way through |
---|
| 798 | // calibration to avoid a tRAS violation (which will happen if that |
---|
| 799 | // stage of calibration lasts long enough). This signal must meet the |
---|
| 800 | // following requirements: (1) only transition from 0->1 when the refresh |
---|
| 801 | // request is needed, (2) stay at 1 and only transition 1->0 when |
---|
| 802 | // CALIB_REF_DONE is asserted |
---|
| 803 | always @(posedge clkdiv) |
---|
| 804 | if (rstdiv) |
---|
| 805 | calib_ref_req <= 1'b0; |
---|
| 806 | else |
---|
| 807 | calib_ref_req <= cal1_ref_req | cal2_ref_req | cal4_ref_req; |
---|
| 808 | |
---|
| 809 | // stage 1 calibration requests auto-refresh every 4 bits |
---|
| 810 | generate |
---|
| 811 | if (DQ_BITS < 2) begin: gen_cal1_refresh_dq_lte4 |
---|
| 812 | assign cal1_refresh = 1'b0; |
---|
| 813 | end else begin: gen_cal1_refresh_dq_gt4 |
---|
| 814 | assign cal1_refresh = (next_count_dq[1:0] == 2'b00); |
---|
| 815 | end |
---|
| 816 | endgenerate |
---|
| 817 | |
---|
| 818 | //*************************************************************************** |
---|
| 819 | // First stage calibration: DQ-DQS |
---|
| 820 | // Definitions: |
---|
| 821 | // edge: detected when varying IDELAY, and current capture data != prev |
---|
| 822 | // capture data |
---|
| 823 | // valid bit window: detected when current capture data == prev capture |
---|
| 824 | // data for more than half the bit time |
---|
| 825 | // starting conditions for DQS-DQ phase: |
---|
| 826 | // case 1: when DQS starts somewhere in rising edge bit window, or |
---|
| 827 | // on the right edge of the rising bit window. |
---|
| 828 | // case 2: when DQS starts somewhere in falling edge bit window, or |
---|
| 829 | // on the right edge of the falling bit window. |
---|
| 830 | // Algorithm Description: |
---|
| 831 | // 1. Increment DQ IDELAY until we find an edge. |
---|
| 832 | // 2. While we're finding the first edge, note whether a valid bit window |
---|
| 833 | // has been detected before we found an edge. If so, then figure out if |
---|
| 834 | // this is the rising or falling bit window. If rising, then our starting |
---|
| 835 | // DQS-DQ phase is case 1. If falling, then it's case 2. If don't detect |
---|
| 836 | // a valid bit window, then we must have started on the edge of a window. |
---|
| 837 | // Need to wait until later on to decide which case we are. |
---|
| 838 | // - Store FIRST_EDGE IDELAY value |
---|
| 839 | // 3. Now look for second edge. |
---|
| 840 | // 4. While we're finding the second edge, note whether valid bit window |
---|
| 841 | // is detected. If so, then use to, along with results from (2) to figure |
---|
| 842 | // out what the starting case is. If in rising bit window, then we're in |
---|
| 843 | // case 2. If falling, then case 1. |
---|
| 844 | // - Store SECOND_EDGE IDELAY value |
---|
| 845 | // NOTES: |
---|
| 846 | // a. Finding two edges allows us to calculate the bit time (although |
---|
| 847 | // not the "same" bit time polarity - need to investigate this |
---|
| 848 | // more). |
---|
| 849 | // b. If we run out of taps looking for the second edge, then the bit |
---|
| 850 | // time must be too long (>= 2.5ns, and DQS-DQ starting phase must be |
---|
| 851 | // case 1). |
---|
| 852 | // 5. Calculate absolute amount to delay DQ as: |
---|
| 853 | // If second edge found, and case 1: |
---|
| 854 | // - DQ_IDELAY = FIRST_EDGE - 0.5*(SECOND_EDGE - FIRST_EDGE) |
---|
| 855 | // If second edge found, and case 2: |
---|
| 856 | // - DQ_IDELAY = SECOND_EDGE - 0.5*(SECOND_EDGE - FIRST_EDGE) |
---|
| 857 | // If second edge not found, then need to make an approximation on |
---|
| 858 | // how much to shift by (should be okay, because we have more timing |
---|
| 859 | // margin): |
---|
| 860 | // - DQ_IDELAY = FIRST_EDGE - 0.5 * (bit_time) |
---|
| 861 | // NOTE: Does this account for either case 1 or case 2????? |
---|
| 862 | // NOTE: It's also possible even when we find the second edge, that |
---|
| 863 | // to instead just use half the bit time to subtract from either |
---|
| 864 | // FIRST or SECOND_EDGE. Finding the actual bit time (which is |
---|
| 865 | // what (SECOND_EDGE - FIRST_EDGE) is, is slightly more accurate, |
---|
| 866 | // since it takes into account duty cycle distortion. |
---|
| 867 | // 6. Repeat for each DQ in current DQS set. |
---|
| 868 | //*************************************************************************** |
---|
| 869 | |
---|
| 870 | //***************************************************************** |
---|
| 871 | // for first stage calibration - used for checking if DQS is aligned to the |
---|
| 872 | // particular DQ, such that we're in the data valid window. Basically, this |
---|
| 873 | // is one giant MUX. |
---|
| 874 | // = [falling data, rising data] |
---|
| 875 | // = [0, 1] = rising DQS aligned in proper (rising edge) bit window |
---|
| 876 | // = [1, 0] = rising DQS aligned in wrong (falling edge) bit window |
---|
| 877 | // = [0, 0], or [1,1] = in uncertain region between windows |
---|
| 878 | //***************************************************************** |
---|
| 879 | |
---|
| 880 | // SYN_NOTE: May have to split this up into multiple levels - MUX can get |
---|
| 881 | // very wide - as wide as the data bus width |
---|
| 882 | always @(posedge clkdiv) |
---|
| 883 | cal1_data_chk_r <= {rd_data_fall_1x_r[next_count_dq], |
---|
| 884 | rd_data_rise_1x_r[next_count_dq]}; |
---|
| 885 | |
---|
| 886 | //***************************************************************** |
---|
| 887 | // determine when an edge has occurred - when either the current value |
---|
| 888 | // is different from the previous latched value or when the DATA_CHK |
---|
| 889 | // outputs are the same (rare, but indicates that we're at an edge) |
---|
| 890 | // This is only valid when the IDELAY output and propagation of the |
---|
| 891 | // data through the capture flops has had a chance to settle out. |
---|
| 892 | //***************************************************************** |
---|
| 893 | |
---|
| 894 | // write CAL1_DETECT_EDGE and CAL1_DETECT_STABLE in such a way that |
---|
| 895 | // if X's are captured on the bus during functional simulation, that |
---|
| 896 | // the logic will register this as an edge detected. Do this to allow |
---|
| 897 | // use of this HDL with Denali memory models (Denali models drive DQ |
---|
| 898 | // to X's on both edges of the data valid window to simulate jitter) |
---|
| 899 | // This is only done for functional simulation purposes. **Should not** |
---|
| 900 | // make the final synthesized logic more complicated, but it does make |
---|
| 901 | // the HDL harder to understand b/c we have to "phrase" the logic |
---|
| 902 | // slightly differently than when not worrying about X's |
---|
| 903 | always @(*) begin |
---|
| 904 | // no edge found if: (1) we have recorded prev edge, and rise |
---|
| 905 | // data == fall data, (2) we haven't yet recorded prev edge, but |
---|
| 906 | // rise/fall data is equal to either [0,1] or [1,0] (i.e. rise/fall |
---|
| 907 | // data isn't either X's, or [0,0] or [1,1], which indicates we're |
---|
| 908 | // in the middle of an edge, since normally rise != fall data for stg1) |
---|
| 909 | if ((cal1_data_chk_last_valid && |
---|
| 910 | (cal1_data_chk_r == cal1_data_chk_last)) || |
---|
| 911 | (!cal1_data_chk_last_valid && |
---|
| 912 | ((cal1_data_chk_r == 2'b01) || (cal1_data_chk_r == 2'b10)))) |
---|
| 913 | cal1_detect_edge = 1'b0; |
---|
| 914 | else |
---|
| 915 | cal1_detect_edge = 1'b1; |
---|
| 916 | end |
---|
| 917 | |
---|
| 918 | always @(*) begin |
---|
| 919 | // assert if we've found a region where data valid window is stable |
---|
| 920 | // over consecutive IDELAY taps, and either rise/fall = [1,0], or [0,1] |
---|
| 921 | if ((cal1_data_chk_last_valid && |
---|
| 922 | (cal1_data_chk_r == cal1_data_chk_last)) && |
---|
| 923 | ((cal1_data_chk_r == 2'b01) || (cal1_data_chk_r == 2'b10))) |
---|
| 924 | cal1_detect_stable = 1'b1; |
---|
| 925 | else |
---|
| 926 | cal1_detect_stable = 1'b0; |
---|
| 927 | end |
---|
| 928 | |
---|
| 929 | //***************************************************************** |
---|
| 930 | // Find valid window: keep track of how long we've been in the same data |
---|
| 931 | // window. If it's been long enough, then declare that we've found a valid |
---|
| 932 | // window. Also returns whether we found a rising or falling window (only |
---|
| 933 | // valid when found_window is asserted) |
---|
| 934 | //***************************************************************** |
---|
| 935 | |
---|
| 936 | always @(posedge clkdiv) begin |
---|
| 937 | if (cal1_state == CAL1_INIT) begin |
---|
| 938 | cal1_window_cnt <= 4'b0000; |
---|
| 939 | cal1_found_window <= 1'b0; |
---|
| 940 | cal1_found_rising <= 1'bx; |
---|
| 941 | end else if (!cal1_data_chk_last_valid) begin |
---|
| 942 | // if we haven't stored a previous value of CAL1_DATA_CHK (or it got |
---|
| 943 | // invalidated because we detected an edge, and are now looking for the |
---|
| 944 | // second edge), then make sure FOUND_WINDOW deasserted on following |
---|
| 945 | // clock edge (to avoid finding a false window immediately after finding |
---|
| 946 | // an edge). Note that because of jitter, it's possible to not find an |
---|
| 947 | // edge at the end of the IDELAY increment settling time, but to find an |
---|
| 948 | // edge on the next clock cycle (e.g. during CAL1_FIND_FIRST_EDGE) |
---|
| 949 | cal1_window_cnt <= 4'b0000; |
---|
| 950 | cal1_found_window <= 1'b0; |
---|
| 951 | cal1_found_rising <= 1'bx; |
---|
| 952 | end else if (((cal1_state == CAL1_FIRST_EDGE_IDEL_WAIT) || |
---|
| 953 | (cal1_state == CAL1_SECOND_EDGE_IDEL_WAIT)) && |
---|
| 954 | !idel_set_wait) begin |
---|
| 955 | // while finding the first and second edges, see if we can detect a |
---|
| 956 | // stable bit window (occurs over MIN_WIN_SIZE number of taps). If |
---|
| 957 | // so, then we're away from an edge, and can conclusively determine the |
---|
| 958 | // starting DQS-DQ phase. |
---|
| 959 | if (cal1_detect_stable) begin |
---|
| 960 | cal1_window_cnt <= cal1_window_cnt + 1; |
---|
| 961 | if (cal1_window_cnt == MIN_WIN_SIZE-1) begin |
---|
| 962 | cal1_found_window <= 1'b1; |
---|
| 963 | if (cal1_data_chk_r == 2'b01) |
---|
| 964 | cal1_found_rising <= 1'b1; |
---|
| 965 | else |
---|
| 966 | cal1_found_rising <= 1'b0; |
---|
| 967 | end |
---|
| 968 | end else begin |
---|
| 969 | // otherwise, we're not in a data valid window, reset the window |
---|
| 970 | // counter, and indicate we're not currently in window. This should |
---|
| 971 | // happen by design at least once after finding the first edge. |
---|
| 972 | cal1_window_cnt <= 4'b0000; |
---|
| 973 | cal1_found_window <= 1'b0; |
---|
| 974 | cal1_found_rising <= 1'bx; |
---|
| 975 | end |
---|
| 976 | end |
---|
| 977 | end |
---|
| 978 | |
---|
| 979 | //***************************************************************** |
---|
| 980 | // keep track of edge tap counts found, and whether we've |
---|
| 981 | // incremented to the maximum number of taps allowed |
---|
| 982 | //***************************************************************** |
---|
| 983 | |
---|
| 984 | always @(posedge clkdiv) |
---|
| 985 | if (cal1_state == CAL1_INIT) begin |
---|
| 986 | cal1_idel_tap_limit_hit <= 1'b0; |
---|
| 987 | cal1_idel_tap_cnt <= 6'b000000; |
---|
| 988 | end else if (cal1_dlyce_dq) begin |
---|
| 989 | if (cal1_dlyinc_dq) begin |
---|
| 990 | cal1_idel_tap_cnt <= cal1_idel_tap_cnt + 1; |
---|
| 991 | cal1_idel_tap_limit_hit <= (cal1_idel_tap_cnt == 6'b111110); |
---|
| 992 | end else begin |
---|
| 993 | cal1_idel_tap_cnt <= cal1_idel_tap_cnt - 1; |
---|
| 994 | cal1_idel_tap_limit_hit <= 1'b0; |
---|
| 995 | end |
---|
| 996 | end |
---|
| 997 | |
---|
| 998 | //***************************************************************** |
---|
| 999 | // Pipeline for better timing - amount to decrement by if second |
---|
| 1000 | // edge not found |
---|
| 1001 | //***************************************************************** |
---|
| 1002 | // if only one edge found (possible for low frequencies), then: |
---|
| 1003 | // 1. Assume starting DQS-DQ phase has DQS in DQ window (aka "case 1") |
---|
| 1004 | // 2. We have to decrement by (63 - first_edge_tap_cnt) + (BIT_TIME_TAPS/2) |
---|
| 1005 | // (i.e. decrement by 63-first_edge_tap_cnt to get to right edge of |
---|
| 1006 | // DQ window. Then decrement again by (BIT_TIME_TAPS/2) to get to center |
---|
| 1007 | // of DQ window. |
---|
| 1008 | // 3. Clamp the above value at 63 to ensure we don't underflow IDELAY |
---|
| 1009 | // (note: clamping happens in the CAL1 state machine) |
---|
| 1010 | always @(posedge clkdiv) |
---|
| 1011 | cal1_low_freq_idel_dec |
---|
| 1012 | <= (7'b0111111 - {1'b0, cal1_first_edge_tap_cnt}) + |
---|
| 1013 | (BIT_TIME_TAPS/2); |
---|
| 1014 | |
---|
| 1015 | //***************************************************************** |
---|
| 1016 | // Keep track of max taps used during stage 1, use this to limit |
---|
| 1017 | // the number of taps that can be used in stage 2 |
---|
| 1018 | //***************************************************************** |
---|
| 1019 | |
---|
| 1020 | always @(posedge clkdiv) |
---|
| 1021 | if (rstdiv) begin |
---|
| 1022 | cal1_idel_max_tap <= 6'b000000; |
---|
| 1023 | cal1_idel_max_tap_we <= 1'b0; |
---|
| 1024 | end else begin |
---|
| 1025 | // pipeline latch enable for CAL1_IDEL_MAX_TAP - we have plenty |
---|
| 1026 | // of time, tap count gets updated, then dead cycles waiting for |
---|
| 1027 | // IDELAY output to settle |
---|
| 1028 | cal1_idel_max_tap_we <= (cal1_idel_max_tap < cal1_idel_tap_cnt); |
---|
| 1029 | // record maximum # of taps used for stg 1 cal |
---|
| 1030 | if ((cal1_state == CAL1_DONE) && cal1_idel_max_tap_we) |
---|
| 1031 | cal1_idel_max_tap <= cal1_idel_tap_cnt; |
---|
| 1032 | end |
---|
| 1033 | |
---|
| 1034 | //***************************************************************** |
---|
| 1035 | |
---|
| 1036 | always @(posedge clkdiv) |
---|
| 1037 | if (rstdiv) begin |
---|
| 1038 | calib_done[0] <= 1'b0; |
---|
| 1039 | calib_done_tmp[0] <= 1'bx; |
---|
| 1040 | calib_err[0] <= 1'b0; |
---|
| 1041 | count_dq <= {DQ_BITS{1'b0}}; |
---|
| 1042 | next_count_dq <= {DQ_BITS{1'b0}}; |
---|
| 1043 | cal1_bit_time_tap_cnt <= 6'bxxxxxx; |
---|
| 1044 | cal1_data_chk_last <= 2'bxx; |
---|
| 1045 | cal1_data_chk_last_valid <= 1'bx; |
---|
| 1046 | cal1_dlyce_dq <= 1'b0; |
---|
| 1047 | cal1_dlyinc_dq <= 1'b0; |
---|
| 1048 | cal1_dqs_dq_init_phase <= 1'bx; |
---|
| 1049 | cal1_first_edge_done <= 1'bx; |
---|
| 1050 | cal1_found_second_edge <= 1'bx; |
---|
| 1051 | cal1_first_edge_tap_cnt <= 6'bxxxxxx; |
---|
| 1052 | cal1_idel_dec_cnt <= 7'bxxxxxxx; |
---|
| 1053 | cal1_idel_inc_cnt <= 6'bxxxxxx; |
---|
| 1054 | cal1_ref_req <= 1'b0; |
---|
| 1055 | cal1_state <= CAL1_IDLE; |
---|
| 1056 | end else begin |
---|
| 1057 | // default values for all "pulse" outputs |
---|
| 1058 | cal1_ref_req <= 1'b0; |
---|
| 1059 | cal1_dlyce_dq <= 1'b0; |
---|
| 1060 | cal1_dlyinc_dq <= 1'b0; |
---|
| 1061 | |
---|
| 1062 | case (cal1_state) |
---|
| 1063 | CAL1_IDLE: begin |
---|
| 1064 | count_dq <= {DQ_BITS{1'b0}}; |
---|
| 1065 | next_count_dq <= {DQ_BITS{1'b0}}; |
---|
| 1066 | if (calib_start[0]) begin |
---|
| 1067 | calib_done[0] <= 1'b0; |
---|
| 1068 | calib_done_tmp[0] <= 1'b0; |
---|
| 1069 | cal1_state <= CAL1_INIT; |
---|
| 1070 | end |
---|
| 1071 | end |
---|
| 1072 | |
---|
| 1073 | CAL1_INIT: begin |
---|
| 1074 | cal1_data_chk_last_valid <= 1'b0; |
---|
| 1075 | cal1_found_second_edge <= 1'b0; |
---|
| 1076 | cal1_dqs_dq_init_phase <= 1'b0; |
---|
| 1077 | cal1_idel_inc_cnt <= 6'b000000; |
---|
| 1078 | cal1_state <= CAL1_INC_IDEL; |
---|
| 1079 | end |
---|
| 1080 | |
---|
| 1081 | // increment DQ IDELAY so that either: (1) DQS starts somewhere in |
---|
| 1082 | // first rising DQ window, or (2) DQS starts in first falling DQ |
---|
| 1083 | // window. The amount to shift is frequency dependent (and is either |
---|
| 1084 | // precalculated by MIG or possibly adjusted by the user) |
---|
| 1085 | CAL1_INC_IDEL: |
---|
| 1086 | if ((cal1_idel_inc_cnt == DQ_IDEL_INIT) && !idel_set_wait) begin |
---|
| 1087 | cal1_state <= CAL1_FIND_FIRST_EDGE; |
---|
| 1088 | end else if (cal1_idel_inc_cnt != DQ_IDEL_INIT) begin |
---|
| 1089 | cal1_idel_inc_cnt <= cal1_idel_inc_cnt + 1; |
---|
| 1090 | cal1_dlyce_dq <= 1'b1; |
---|
| 1091 | cal1_dlyinc_dq <= 1'b1; |
---|
| 1092 | end |
---|
| 1093 | |
---|
| 1094 | // look for first edge |
---|
| 1095 | CAL1_FIND_FIRST_EDGE: begin |
---|
| 1096 | // Determine DQS-DQ phase if we can detect enough of a valid window |
---|
| 1097 | if (cal1_found_window) |
---|
| 1098 | cal1_dqs_dq_init_phase <= ~cal1_found_rising; |
---|
| 1099 | // find first edge - if found then record position |
---|
| 1100 | if (cal1_detect_edge) begin |
---|
| 1101 | cal1_state <= CAL1_FOUND_FIRST_EDGE_WAIT; |
---|
| 1102 | cal1_first_edge_done <= 1'b0; |
---|
| 1103 | cal1_first_edge_tap_cnt <= cal1_idel_tap_cnt; |
---|
| 1104 | cal1_data_chk_last_valid <= 1'b0; |
---|
| 1105 | end else begin |
---|
| 1106 | // otherwise, store the current value of DATA_CHK, increment |
---|
| 1107 | // DQ IDELAY, and compare again |
---|
| 1108 | cal1_state <= CAL1_FIRST_EDGE_IDEL_WAIT; |
---|
| 1109 | cal1_data_chk_last <= cal1_data_chk_r; |
---|
| 1110 | // avoid comparing against DATA_CHK_LAST for previous iteration |
---|
| 1111 | cal1_data_chk_last_valid <= 1'b1; |
---|
| 1112 | cal1_dlyce_dq <= 1'b1; |
---|
| 1113 | cal1_dlyinc_dq <= 1'b1; |
---|
| 1114 | end |
---|
| 1115 | end |
---|
| 1116 | |
---|
| 1117 | // wait for DQ IDELAY to settle |
---|
| 1118 | CAL1_FIRST_EDGE_IDEL_WAIT: |
---|
| 1119 | if (!idel_set_wait) |
---|
| 1120 | cal1_state <= CAL1_FIND_FIRST_EDGE; |
---|
| 1121 | |
---|
| 1122 | // delay state between finding first edge and looking for second |
---|
| 1123 | // edge. Necessary in order to invalidate CAL1_FOUND_WINDOW before |
---|
| 1124 | // starting to look for second edge |
---|
| 1125 | CAL1_FOUND_FIRST_EDGE_WAIT: |
---|
| 1126 | cal1_state <= CAL1_FIND_SECOND_EDGE; |
---|
| 1127 | |
---|
| 1128 | // Try and find second edge |
---|
| 1129 | CAL1_FIND_SECOND_EDGE: begin |
---|
| 1130 | // When looking for 2nd edge, first make sure data stabilized (by |
---|
| 1131 | // detecting valid data window) - needed to avoid false edges |
---|
| 1132 | if (cal1_found_window) begin |
---|
| 1133 | cal1_first_edge_done <= 1'b1; |
---|
| 1134 | cal1_dqs_dq_init_phase <= cal1_found_rising; |
---|
| 1135 | end |
---|
| 1136 | // exit if run out of taps to increment |
---|
| 1137 | if (cal1_idel_tap_limit_hit) |
---|
| 1138 | cal1_state <= CAL1_CALC_IDEL; |
---|
| 1139 | else begin |
---|
| 1140 | // found second edge, record the current edge count |
---|
| 1141 | if (cal1_first_edge_done && cal1_detect_edge) begin |
---|
| 1142 | cal1_state <= CAL1_CALC_IDEL; |
---|
| 1143 | cal1_found_second_edge <= 1'b1; |
---|
| 1144 | cal1_bit_time_tap_cnt <= cal1_idel_tap_cnt - |
---|
| 1145 | cal1_first_edge_tap_cnt + 1; |
---|
| 1146 | end else begin |
---|
| 1147 | cal1_state <= CAL1_SECOND_EDGE_IDEL_WAIT; |
---|
| 1148 | cal1_data_chk_last <= cal1_data_chk_r; |
---|
| 1149 | cal1_data_chk_last_valid <= 1'b1; |
---|
| 1150 | cal1_dlyce_dq <= 1'b1; |
---|
| 1151 | cal1_dlyinc_dq <= 1'b1; |
---|
| 1152 | end |
---|
| 1153 | end |
---|
| 1154 | end |
---|
| 1155 | |
---|
| 1156 | // wait for DQ IDELAY to settle, then store ISERDES output |
---|
| 1157 | CAL1_SECOND_EDGE_IDEL_WAIT: |
---|
| 1158 | if (!idel_set_wait) |
---|
| 1159 | cal1_state <= CAL1_FIND_SECOND_EDGE; |
---|
| 1160 | |
---|
| 1161 | // pipeline delay state to calculate amount to decrement DQ IDELAY |
---|
| 1162 | // NOTE: We're calculating the amount to decrement by, not the |
---|
| 1163 | // absolute setting for DQ IDELAY |
---|
| 1164 | CAL1_CALC_IDEL: begin |
---|
| 1165 | // if two edges found |
---|
| 1166 | if (cal1_found_second_edge) |
---|
| 1167 | // case 1: DQS was in DQ window to start with. First edge found |
---|
| 1168 | // corresponds to left edge of DQ rising window. Backup by 1.5*BT |
---|
| 1169 | // NOTE: In this particular case, it is possible to decrement |
---|
| 1170 | // "below 0" in the case where DQS delay is less than 0.5*BT, |
---|
| 1171 | // need to limit decrement to prevent IDELAY tap underflow |
---|
| 1172 | if (!cal1_dqs_dq_init_phase) |
---|
| 1173 | cal1_idel_dec_cnt <= {1'b0, cal1_bit_time_tap_cnt} + |
---|
| 1174 | {1'b0, (cal1_bit_time_tap_cnt >> 1)}; |
---|
| 1175 | // case 2: DQS was in wrong DQ window (in DQ falling window). |
---|
| 1176 | // First edge found is right edge of DQ rising window. Second |
---|
| 1177 | // edge is left edge of DQ rising window. Backup by 0.5*BT |
---|
| 1178 | else |
---|
| 1179 | cal1_idel_dec_cnt <= {1'b0, (cal1_bit_time_tap_cnt >> 1)}; |
---|
| 1180 | // if only one edge found - assume will always be case 1 - DQS in |
---|
| 1181 | // DQS window. Case 2 only possible if path delay on DQS > 5ns |
---|
| 1182 | else |
---|
| 1183 | cal1_idel_dec_cnt <= cal1_low_freq_idel_dec; |
---|
| 1184 | cal1_state <= CAL1_DEC_IDEL; |
---|
| 1185 | end |
---|
| 1186 | |
---|
| 1187 | // decrement DQ IDELAY for final adjustment |
---|
| 1188 | CAL1_DEC_IDEL: |
---|
| 1189 | // once adjustment is complete, we're done with calibration for |
---|
| 1190 | // this DQ, now return to IDLE state and repeat for next DQ |
---|
| 1191 | // Add underflow protection for case of 2 edges found and DQS |
---|
| 1192 | // starting in DQ window (see comments for above state) - note we |
---|
| 1193 | // have to take into account delayed value of CAL1_IDEL_TAP_CNT - |
---|
| 1194 | // gets updated one clock cycle after CAL1_DLYCE/INC_DQ |
---|
| 1195 | if ((cal1_idel_dec_cnt == 7'b0000000) || |
---|
| 1196 | (cal1_dlyce_dq && (cal1_idel_tap_cnt == 6'b000001))) begin |
---|
| 1197 | cal1_state <= CAL1_DONE; |
---|
| 1198 | // stop when all DQ's calibrated, or DQ[0] cal'ed (for sim) |
---|
| 1199 | if ((count_dq == DQ_WIDTH-1) || (SIM_ONLY != 0)) |
---|
| 1200 | calib_done_tmp[0] <= 1'b1; |
---|
| 1201 | else |
---|
| 1202 | // need for VHDL simulation to prevent out-of-index error |
---|
| 1203 | next_count_dq <= count_dq + 1; |
---|
| 1204 | end else begin |
---|
| 1205 | // keep decrementing until final tap count reached |
---|
| 1206 | cal1_idel_dec_cnt <= cal1_idel_dec_cnt - 1; |
---|
| 1207 | cal1_dlyce_dq <= 1'b1; |
---|
| 1208 | cal1_dlyinc_dq <= 1'b0; |
---|
| 1209 | end |
---|
| 1210 | |
---|
| 1211 | // delay state to allow count_dq and DATA_CHK to point to the next |
---|
| 1212 | // DQ bit (allows us to potentially begin checking for an edge on |
---|
| 1213 | // next DQ right away). |
---|
| 1214 | CAL1_DONE: |
---|
| 1215 | if (!idel_set_wait) begin |
---|
| 1216 | count_dq <= next_count_dq; |
---|
| 1217 | if (calib_done_tmp[0]) begin |
---|
| 1218 | calib_done[0] <= 1'b1; |
---|
| 1219 | cal1_state <= CAL1_IDLE; |
---|
| 1220 | end else begin |
---|
| 1221 | // request auto-refresh after every 8-bits calibrated to |
---|
| 1222 | // avoid tRAS violation |
---|
| 1223 | if (cal1_refresh) begin |
---|
| 1224 | cal1_ref_req <= 1'b1; |
---|
| 1225 | if (calib_ref_done) |
---|
| 1226 | cal1_state <= CAL1_INIT; |
---|
| 1227 | end else |
---|
| 1228 | // if no need this time for refresh, proceed to next bit |
---|
| 1229 | cal1_state <= CAL1_INIT; |
---|
| 1230 | end |
---|
| 1231 | end |
---|
| 1232 | endcase |
---|
| 1233 | end |
---|
| 1234 | |
---|
| 1235 | //*************************************************************************** |
---|
| 1236 | // Second stage calibration: DQS-FPGA Clock |
---|
| 1237 | // Algorithm Description: |
---|
| 1238 | // 1. Assumes a training pattern that will produce a pattern oscillating at |
---|
| 1239 | // half the core clock frequency each on rise and fall outputs, and such |
---|
| 1240 | // that rise and fall outputs are 180 degrees out of phase from each |
---|
| 1241 | // other. Note that since the calibration logic runs at half the speed |
---|
| 1242 | // of the interface, expect that data sampled with the slow clock always |
---|
| 1243 | // to be constant (either always = 1, or = 0, and rise data != fall data) |
---|
| 1244 | // unless we cross the edge of the data valid window |
---|
| 1245 | // 2. Start by setting RD_DATA_SEL = 0. This selects the rising capture data |
---|
| 1246 | // sync'ed to rising edge of core clock, and falling edge data sync'ed |
---|
| 1247 | // to falling edge of core clock |
---|
| 1248 | // 3. Start looking for an edge. An edge is defined as either: (1) a |
---|
| 1249 | // change in capture value or (2) an invalid capture value (e.g. rising |
---|
| 1250 | // data != falling data for that same clock cycle). |
---|
| 1251 | // 4. If an edge is found, go to step (6). If edge hasn't been found, then |
---|
| 1252 | // set RD_DATA_SEL = 1, and try again. |
---|
| 1253 | // 5. If no edge is found, then increment IDELAY and return to step (3) |
---|
| 1254 | // 6. If an edge if found, then invert RD_DATA_SEL - this shifts the |
---|
| 1255 | // capture point 180 degrees from the edge of the window (minus duty |
---|
| 1256 | // cycle distortion, delay skew between rising/falling edge capture |
---|
| 1257 | // paths, etc.) |
---|
| 1258 | // 7. If no edge is found by CAL2_IDEL_TAP_LIMIT (= 63 - # taps used for |
---|
| 1259 | // stage 1 calibration), then decrement IDELAY (without reinverting |
---|
| 1260 | // RD_DATA_SEL) by CAL2_IDEL_TAP_LIMIT/2. This guarantees we at least |
---|
| 1261 | // have CAL2_IDEL_TAP_LIMIT/2 of slack both before and after the |
---|
| 1262 | // capture point (not optimal, but best we can do not having found an |
---|
| 1263 | // of the window). This happens only for very low frequencies. |
---|
| 1264 | // 8. Repeat for each DQS group. |
---|
| 1265 | // NOTE: Step 6 is not optimal. A better (and perhaps more complicated) |
---|
| 1266 | // algorithm might be to find both edges of the data valid window (using |
---|
| 1267 | // the same polarity of RD_DATA_SEL), and then decrement to the midpoint. |
---|
| 1268 | //*************************************************************************** |
---|
| 1269 | |
---|
| 1270 | // RD_DATA_SEL should be tagged with FROM-TO (multi-cycle) constraint in |
---|
| 1271 | // UCF file to relax timing. This net is "pseudo-static" (after value is |
---|
| 1272 | // changed, FSM waits number of cycles before using the output). |
---|
| 1273 | // Note that we are adding one clock cycle of delay (to isolate it from |
---|
| 1274 | // the other logic CAL2_RD_DATA_SEL feeds), make sure FSM waits long |
---|
| 1275 | // enough to compensate (by default it does, it waits a few cycles more |
---|
| 1276 | // than minimum # of clock cycles) |
---|
| 1277 | genvar rd_i; |
---|
| 1278 | generate |
---|
| 1279 | for (rd_i = 0; rd_i < DQS_WIDTH; rd_i = rd_i+1) begin: gen_rd_data_sel |
---|
| 1280 | FDRSE u_ff_rd_data_sel |
---|
| 1281 | ( |
---|
| 1282 | .Q (rd_data_sel[rd_i]), |
---|
| 1283 | .C (clkdiv), |
---|
| 1284 | .CE (1'b1), |
---|
| 1285 | .D (cal2_rd_data_sel[rd_i]), |
---|
| 1286 | .R (1'b0), |
---|
| 1287 | .S (1'b0) |
---|
| 1288 | ) /* synthesis syn_preserve = 1 */ |
---|
| 1289 | /* synthesis syn_replicate = 0 */; |
---|
| 1290 | end |
---|
| 1291 | endgenerate |
---|
| 1292 | |
---|
| 1293 | //***************************************************************** |
---|
| 1294 | // Max number of taps used for stg2 cal dependent on number of taps |
---|
| 1295 | // used for stg1 (give priority to stg1 cal - let it use as many |
---|
| 1296 | // taps as it needs - the remainder of the IDELAY taps can be used |
---|
| 1297 | // by stg2) |
---|
| 1298 | //***************************************************************** |
---|
| 1299 | |
---|
| 1300 | always @(posedge clkdiv) |
---|
| 1301 | cal2_idel_tap_limit <= 6'b111111 - cal1_idel_max_tap; |
---|
| 1302 | |
---|
| 1303 | //***************************************************************** |
---|
| 1304 | // second stage calibration uses readback pattern of "1100" (i.e. |
---|
| 1305 | // 1st rising = 1, 1st falling = 1, 2nd rising = 0, 2nd falling = 0) |
---|
| 1306 | // only look at the first bit of each DQS group |
---|
| 1307 | //***************************************************************** |
---|
| 1308 | |
---|
| 1309 | // deasserted when captured data has changed since IDELAY was |
---|
| 1310 | // incremented, or when we're right on the edge (i.e. rise data = |
---|
| 1311 | // fall data). |
---|
| 1312 | assign cal2_detect_edge = |
---|
| 1313 | ((((rdd_rise_q1 != cal2_rd_data_rise_last_pos) || |
---|
| 1314 | (rdd_fall_q1 != cal2_rd_data_fall_last_pos)) && |
---|
| 1315 | cal2_rd_data_last_valid_pos && (!cal2_curr_sel)) || |
---|
| 1316 | (((rdd_rise_q1 != cal2_rd_data_rise_last_neg) || |
---|
| 1317 | (rdd_fall_q1 != cal2_rd_data_fall_last_neg)) && |
---|
| 1318 | cal2_rd_data_last_valid_neg && (cal2_curr_sel)) || |
---|
| 1319 | (rdd_rise_q1 != rdd_fall_q1)); |
---|
| 1320 | |
---|
| 1321 | //***************************************************************** |
---|
| 1322 | // keep track of edge tap counts found, and whether we've |
---|
| 1323 | // incremented to the maximum number of taps allowed |
---|
| 1324 | // NOTE: Assume stage 2 cal always increments the tap count (never |
---|
| 1325 | // decrements) when searching for edge of the data valid window |
---|
| 1326 | //***************************************************************** |
---|
| 1327 | |
---|
| 1328 | always @(posedge clkdiv) |
---|
| 1329 | if (cal2_state == CAL2_INIT) begin |
---|
| 1330 | cal2_idel_tap_limit_hit <= 1'b0; |
---|
| 1331 | cal2_idel_tap_cnt <= 6'b000000; |
---|
| 1332 | end else if (cal2_dlyce_dqs) begin |
---|
| 1333 | cal2_idel_tap_cnt <= cal2_idel_tap_cnt + 1; |
---|
| 1334 | cal2_idel_tap_limit_hit <= (cal2_idel_tap_cnt == |
---|
| 1335 | cal2_idel_tap_limit - 1); |
---|
| 1336 | end |
---|
| 1337 | |
---|
| 1338 | //***************************************************************** |
---|
| 1339 | |
---|
| 1340 | always @(posedge clkdiv) |
---|
| 1341 | if (rstdiv) begin |
---|
| 1342 | calib_done[1] <= 1'b0; |
---|
| 1343 | calib_done_tmp[1] <= 1'bx; |
---|
| 1344 | calib_err[1] <= 1'b0; |
---|
| 1345 | count_dqs <= 'b0; |
---|
| 1346 | next_count_dqs <= 'b0; |
---|
| 1347 | cal2_dlyce_dqs <= 1'b0; |
---|
| 1348 | cal2_dlyinc_dqs <= 1'b0; |
---|
| 1349 | cal2_idel_dec_cnt <= 6'bxxxxxx; |
---|
| 1350 | cal2_rd_data_last_valid_neg <= 1'bx; |
---|
| 1351 | cal2_rd_data_last_valid_pos <= 1'bx; |
---|
| 1352 | cal2_rd_data_sel <= 'b0; |
---|
| 1353 | cal2_ref_req <= 1'b0; |
---|
| 1354 | cal2_state <= CAL2_IDLE; |
---|
| 1355 | end else begin |
---|
| 1356 | cal2_ref_req <= 1'b0; |
---|
| 1357 | cal2_dlyce_dqs <= 1'b0; |
---|
| 1358 | cal2_dlyinc_dqs <= 1'b0; |
---|
| 1359 | |
---|
| 1360 | case (cal2_state) |
---|
| 1361 | CAL2_IDLE: begin |
---|
| 1362 | count_dqs <= 'b0; |
---|
| 1363 | next_count_dqs <= 'b0; |
---|
| 1364 | if (calib_start[1]) begin |
---|
| 1365 | cal2_rd_data_sel <= {DQS_WIDTH{1'b0}}; |
---|
| 1366 | calib_done[1] <= 1'b0; |
---|
| 1367 | calib_done_tmp[1] <= 1'b0; |
---|
| 1368 | cal2_state <= CAL2_INIT; |
---|
| 1369 | end |
---|
| 1370 | end |
---|
| 1371 | |
---|
| 1372 | // Pass through this state every time we calibrate a new DQS group |
---|
| 1373 | CAL2_INIT: begin |
---|
| 1374 | cal2_curr_sel <= 1'b0; |
---|
| 1375 | cal2_rd_data_last_valid_neg <= 1'b0; |
---|
| 1376 | cal2_rd_data_last_valid_pos <= 1'b0; |
---|
| 1377 | cal2_state <= CAL2_INIT_IDEL_WAIT; |
---|
| 1378 | end |
---|
| 1379 | |
---|
| 1380 | // Stall state only used if calibration run more than once. Can take |
---|
| 1381 | // this state out if design never runs calibration more than once. |
---|
| 1382 | // We need this state to give time for MUX'ed data to settle after |
---|
| 1383 | // resetting RD_DATA_SEL |
---|
| 1384 | CAL2_INIT_IDEL_WAIT: |
---|
| 1385 | if (!idel_set_wait) |
---|
| 1386 | cal2_state <= CAL2_FIND_EDGE_POS; |
---|
| 1387 | |
---|
| 1388 | // Look for an edge - first check "positive-edge" stage 2 capture |
---|
| 1389 | CAL2_FIND_EDGE_POS: begin |
---|
| 1390 | // if found an edge, then switch to the opposite edge stage 2 |
---|
| 1391 | // capture and we're done - no need to decrement the tap count, |
---|
| 1392 | // since switching to the opposite edge will shift the capture |
---|
| 1393 | // point by 180 degrees |
---|
| 1394 | if (cal2_detect_edge) begin |
---|
| 1395 | cal2_curr_sel <= 1'b1; |
---|
| 1396 | cal2_state <= CAL2_DONE; |
---|
| 1397 | // set all DQS groups to be the same for simulation |
---|
| 1398 | if (SIM_ONLY != 0) |
---|
| 1399 | cal2_rd_data_sel <= {DQS_WIDTH{1'b1}}; |
---|
| 1400 | else |
---|
| 1401 | cal2_rd_data_sel[count_dqs] <= 1'b1; |
---|
| 1402 | if ((count_dqs == DQS_WIDTH-1) || (SIM_ONLY != 0)) |
---|
| 1403 | calib_done_tmp[1] <= 1'b1; |
---|
| 1404 | else |
---|
| 1405 | // MIG 2.1: Fix for simulation out-of-bounds error when |
---|
| 1406 | // SIM_ONLY=0, and DQS_WIDTH=(power of 2) (needed for VHDL) |
---|
| 1407 | next_count_dqs <= count_dqs + 1; |
---|
| 1408 | end else begin |
---|
| 1409 | // otherwise, invert polarity of stage 2 capture and look for |
---|
| 1410 | // an edge with opposite capture clock polarity |
---|
| 1411 | cal2_curr_sel <= 1'b1; |
---|
| 1412 | cal2_rd_data_sel[count_dqs] <= 1'b1; |
---|
| 1413 | cal2_state <= CAL2_FIND_EDGE_IDEL_WAIT_POS; |
---|
| 1414 | cal2_rd_data_rise_last_pos <= rdd_rise_q1; |
---|
| 1415 | cal2_rd_data_fall_last_pos <= rdd_fall_q1; |
---|
| 1416 | cal2_rd_data_last_valid_pos <= 1'b1; |
---|
| 1417 | end |
---|
| 1418 | end |
---|
| 1419 | |
---|
| 1420 | // Give time to switch from positive-edge to negative-edge second |
---|
| 1421 | // stage capture (need time for data to filter though pipe stages) |
---|
| 1422 | CAL2_FIND_EDGE_IDEL_WAIT_POS: |
---|
| 1423 | if (!idel_set_wait) |
---|
| 1424 | cal2_state <= CAL2_FIND_EDGE_NEG; |
---|
| 1425 | |
---|
| 1426 | // Look for an edge - check "negative-edge" stage 2 capture |
---|
| 1427 | CAL2_FIND_EDGE_NEG: |
---|
| 1428 | if (cal2_detect_edge) begin |
---|
| 1429 | cal2_curr_sel <= 1'b0; |
---|
| 1430 | cal2_state <= CAL2_DONE; |
---|
| 1431 | // set all DQS groups to be the same for simulation |
---|
| 1432 | if (SIM_ONLY != 0) |
---|
| 1433 | cal2_rd_data_sel <= {DQS_WIDTH{1'b0}}; |
---|
| 1434 | else |
---|
| 1435 | cal2_rd_data_sel[count_dqs] <= 1'b0; |
---|
| 1436 | if ((count_dqs == DQS_WIDTH-1) || (SIM_ONLY != 0)) |
---|
| 1437 | calib_done_tmp[1] <= 1'b1; |
---|
| 1438 | else |
---|
| 1439 | // MIG 2.1: Fix for simulation out-of-bounds error when |
---|
| 1440 | // SIM_ONLY=0, and DQS_WIDTH=(power of 2) (needed for VHDL) |
---|
| 1441 | next_count_dqs <= count_dqs + 1; |
---|
| 1442 | end else if (cal2_idel_tap_limit_hit) begin |
---|
| 1443 | // otherwise, if we've run out of taps, then immediately |
---|
| 1444 | // backoff by half # of taps used - that's our best estimate |
---|
| 1445 | // for optimal calibration point. Doesn't matter whether which |
---|
| 1446 | // polarity we're using for capture (we don't know which one is |
---|
| 1447 | // best to use) |
---|
| 1448 | cal2_idel_dec_cnt <= {1'b0, cal2_idel_tap_limit[5:1]}; |
---|
| 1449 | cal2_state <= CAL2_DEC_IDEL; |
---|
| 1450 | if ((count_dqs == DQS_WIDTH-1) || (SIM_ONLY != 0)) |
---|
| 1451 | calib_done_tmp[1] <= 1'b1; |
---|
| 1452 | else |
---|
| 1453 | // MIG 2.1: Fix for simulation out-of-bounds error when |
---|
| 1454 | // SIM_ONLY=0, and DQS_WIDTH=(power of 2) (needed for VHDL) |
---|
| 1455 | next_count_dqs <= count_dqs + 1; |
---|
| 1456 | end else begin |
---|
| 1457 | // otherwise, increment IDELAY, and start looking for edge again |
---|
| 1458 | cal2_curr_sel <= 1'b0; |
---|
| 1459 | cal2_rd_data_sel[count_dqs] <= 1'b0; |
---|
| 1460 | cal2_state <= CAL2_FIND_EDGE_IDEL_WAIT_NEG; |
---|
| 1461 | cal2_rd_data_rise_last_neg <= rdd_rise_q1; |
---|
| 1462 | cal2_rd_data_fall_last_neg <= rdd_fall_q1; |
---|
| 1463 | cal2_rd_data_last_valid_neg <= 1'b1; |
---|
| 1464 | cal2_dlyce_dqs <= 1'b1; |
---|
| 1465 | cal2_dlyinc_dqs <= 1'b1; |
---|
| 1466 | end |
---|
| 1467 | |
---|
| 1468 | CAL2_FIND_EDGE_IDEL_WAIT_NEG: |
---|
| 1469 | if (!idel_set_wait) |
---|
| 1470 | cal2_state <= CAL2_FIND_EDGE_POS; |
---|
| 1471 | |
---|
| 1472 | // if no edge found, then decrement by half # of taps used |
---|
| 1473 | CAL2_DEC_IDEL: begin |
---|
| 1474 | if (cal2_idel_dec_cnt == 6'b000000) |
---|
| 1475 | cal2_state <= CAL2_DONE; |
---|
| 1476 | else begin |
---|
| 1477 | cal2_idel_dec_cnt <= cal2_idel_dec_cnt - 1; |
---|
| 1478 | cal2_dlyce_dqs <= 1'b1; |
---|
| 1479 | cal2_dlyinc_dqs <= 1'b0; |
---|
| 1480 | end |
---|
| 1481 | end |
---|
| 1482 | |
---|
| 1483 | // delay state to allow count_dqs and ISERDES data to point to next |
---|
| 1484 | // DQ bit (DQS group) before going to INIT |
---|
| 1485 | CAL2_DONE: |
---|
| 1486 | if (!idel_set_wait) begin |
---|
| 1487 | count_dqs <= next_count_dqs; |
---|
| 1488 | if (calib_done_tmp[1]) begin |
---|
| 1489 | calib_done[1] <= 1'b1; |
---|
| 1490 | cal2_state <= CAL2_IDLE; |
---|
| 1491 | end else begin |
---|
| 1492 | // request auto-refresh after every DQS group calibrated to |
---|
| 1493 | // avoid tRAS violation |
---|
| 1494 | cal2_ref_req <= 1'b1; |
---|
| 1495 | if (calib_ref_done) |
---|
| 1496 | cal2_state <= CAL2_INIT; |
---|
| 1497 | end |
---|
| 1498 | end |
---|
| 1499 | endcase |
---|
| 1500 | end |
---|
| 1501 | |
---|
| 1502 | //*************************************************************************** |
---|
| 1503 | // Stage 3 calibration: Read Enable |
---|
| 1504 | // Description: |
---|
| 1505 | // read enable calibration determines the "round-trip" time (in # of CLK0 |
---|
| 1506 | // cycles) between when a read command is issued by the controller, and |
---|
| 1507 | // when the corresponding read data is synchronized by into the CLK0 domain |
---|
| 1508 | // this is a long delay chain to delay read enable signal from controller/ |
---|
| 1509 | // initialization logic (i.e. this is used for both initialization and |
---|
| 1510 | // during normal controller operation). Stage 3 calibration logic decides |
---|
| 1511 | // which delayed version is appropriate to use (which is affected by the |
---|
| 1512 | // round trip delay of DQ/DQS) as a "valid" signal to tell rest of logic |
---|
| 1513 | // when the captured data output from ISERDES is valid. |
---|
| 1514 | //*************************************************************************** |
---|
| 1515 | |
---|
| 1516 | //***************************************************************** |
---|
| 1517 | // Delay chains: Use shift registers |
---|
| 1518 | // Two sets of delay chains are used: |
---|
| 1519 | // 1. One to delay RDEN from PHY_INIT module for calibration |
---|
| 1520 | // purposes (delay required for RDEN for calibration is different |
---|
| 1521 | // than during normal operation) |
---|
| 1522 | // 2. One per DQS group to delay RDEN from controller for normal |
---|
| 1523 | // operation - the value to delay for each DQS group can be different |
---|
| 1524 | // as is determined during calibration |
---|
| 1525 | //***************************************************************** |
---|
| 1526 | |
---|
| 1527 | //***************************************************************** |
---|
| 1528 | // First delay chain, use only for calibration |
---|
| 1529 | // input = asserted on rising edge of RDEN from PHY_INIT module |
---|
| 1530 | //***************************************************************** |
---|
| 1531 | |
---|
| 1532 | always @(posedge clk) begin |
---|
| 1533 | ctrl_rden_r <= ctrl_rden; |
---|
| 1534 | phy_init_rden_r <= phy_init_rden; |
---|
| 1535 | phy_init_rden_r1 <= phy_init_rden_r; |
---|
| 1536 | calib_rden_edge_r <= phy_init_rden_r & ~phy_init_rden_r1; |
---|
| 1537 | end |
---|
| 1538 | |
---|
| 1539 | // Calibration shift register used for both Stage 3 and Stage 4 cal |
---|
| 1540 | // (not strictly necessary for stage 4, but use as an additional check |
---|
| 1541 | // to make sure we're checking for correct data on the right clock cycle) |
---|
| 1542 | always @(posedge clkdiv) |
---|
| 1543 | if (!calib_done[2]) |
---|
| 1544 | calib_rden_srl_a <= cal3_rden_srl_a; |
---|
| 1545 | else |
---|
| 1546 | calib_rden_srl_a <= cal4_rden_srl_a; |
---|
| 1547 | |
---|
| 1548 | // Flops for targetting of multi-cycle path in UCF |
---|
| 1549 | genvar cal_rden_ff_i; |
---|
| 1550 | generate |
---|
| 1551 | for (cal_rden_ff_i = 0; cal_rden_ff_i < 5; |
---|
| 1552 | cal_rden_ff_i = cal_rden_ff_i+1) begin: gen_cal_rden_dly |
---|
| 1553 | FDRSE u_ff_cal_rden_dly |
---|
| 1554 | ( |
---|
| 1555 | .Q (calib_rden_srl_a_r[cal_rden_ff_i]), |
---|
| 1556 | .C (clkdiv), |
---|
| 1557 | .CE (1'b1), |
---|
| 1558 | .D (calib_rden_srl_a[cal_rden_ff_i]), |
---|
| 1559 | .R (1'b0), |
---|
| 1560 | .S (1'b0) |
---|
| 1561 | ) /* synthesis syn_preserve = 1 */ |
---|
| 1562 | /* synthesis syn_replicate = 0 */; |
---|
| 1563 | end |
---|
| 1564 | endgenerate |
---|
| 1565 | |
---|
| 1566 | SRLC32E u_calib_rden_srl |
---|
| 1567 | ( |
---|
| 1568 | .Q (calib_rden_srl_out), |
---|
| 1569 | .Q31 (), |
---|
| 1570 | .A (calib_rden_srl_a_r), |
---|
| 1571 | .CE (1'b1), |
---|
| 1572 | .CLK (clk), |
---|
| 1573 | .D (calib_rden_edge_r) |
---|
| 1574 | ); |
---|
| 1575 | |
---|
| 1576 | FDRSE u_calib_rden_srl_out_r |
---|
| 1577 | ( |
---|
| 1578 | .Q (calib_rden_srl_out_r), |
---|
| 1579 | .C (clk), |
---|
| 1580 | .CE (1'b1), |
---|
| 1581 | .D (calib_rden_srl_out), |
---|
| 1582 | .R (1'b0), |
---|
| 1583 | .S (1'b0) |
---|
| 1584 | ) /* synthesis syn_preserve = 1 */; |
---|
| 1585 | |
---|
| 1586 | // convert to CLKDIV domain. Two version are generated because we need |
---|
| 1587 | // to be able to tell exactly which fast (clk) clock cycle the read |
---|
| 1588 | // enable was asserted in. Only one of CALIB_DATA_VALID or |
---|
| 1589 | // CALIB_DATA_VALID_STGD will be asserted for any given shift value |
---|
| 1590 | always @(posedge clk) |
---|
| 1591 | calib_rden_srl_out_r1 <= calib_rden_srl_out_r; |
---|
| 1592 | |
---|
| 1593 | always @(posedge clkdiv) begin |
---|
| 1594 | calib_rden_valid <= calib_rden_srl_out_r; |
---|
| 1595 | calib_rden_valid_stgd <= calib_rden_srl_out_r1; |
---|
| 1596 | end |
---|
| 1597 | |
---|
| 1598 | //***************************************************************** |
---|
| 1599 | // Second set of delays chain, use for normal reads |
---|
| 1600 | // input = RDEN from controller |
---|
| 1601 | //***************************************************************** |
---|
| 1602 | |
---|
| 1603 | // Flops for targetting of multi-cycle path in UCF |
---|
| 1604 | genvar rden_ff_i; |
---|
| 1605 | generate |
---|
| 1606 | for (rden_ff_i = 0; rden_ff_i < 5*DQS_WIDTH; |
---|
| 1607 | rden_ff_i = rden_ff_i+1) begin: gen_rden_dly |
---|
| 1608 | FDRSE u_ff_rden_dly |
---|
| 1609 | ( |
---|
| 1610 | .Q (rden_dly_r[rden_ff_i]), |
---|
| 1611 | .C (clkdiv), |
---|
| 1612 | .CE (1'b1), |
---|
| 1613 | .D (rden_dly[rden_ff_i]), |
---|
| 1614 | .R (1'b0), |
---|
| 1615 | .S (1'b0) |
---|
| 1616 | ) /* synthesis syn_preserve = 1 */ |
---|
| 1617 | /* synthesis syn_replicate = 0 */; |
---|
| 1618 | end |
---|
| 1619 | endgenerate |
---|
| 1620 | |
---|
| 1621 | // NOTE: Comment this section explaining purpose of SRL's |
---|
| 1622 | genvar rden_i; |
---|
| 1623 | generate |
---|
| 1624 | for (rden_i = 0; rden_i < DQS_WIDTH; rden_i = rden_i + 1) begin: gen_rden |
---|
| 1625 | SRLC32E u_rden_srl |
---|
| 1626 | ( |
---|
| 1627 | .Q (rden_srl_out[rden_i]), |
---|
| 1628 | .Q31 (), |
---|
| 1629 | .A ({rden_dly_r[(rden_i*5)+4], |
---|
| 1630 | rden_dly_r[(rden_i*5)+3], |
---|
| 1631 | rden_dly_r[(rden_i*5)+2], |
---|
| 1632 | rden_dly_r[(rden_i*5)+1], |
---|
| 1633 | rden_dly_r[(rden_i*5)]}), |
---|
| 1634 | .CE (1'b1), |
---|
| 1635 | .CLK (clk), |
---|
| 1636 | .D (ctrl_rden_r) |
---|
| 1637 | ); |
---|
| 1638 | FDRSE u_calib_rden_r |
---|
| 1639 | ( |
---|
| 1640 | .Q (calib_rden[rden_i]), |
---|
| 1641 | .C (clk), |
---|
| 1642 | .CE (1'b1), |
---|
| 1643 | .D (rden_srl_out[rden_i]), |
---|
| 1644 | .R (1'b0), |
---|
| 1645 | .S (1'b0) |
---|
| 1646 | ) /* synthesis syn_preserve = 1 */; |
---|
| 1647 | end |
---|
| 1648 | endgenerate |
---|
| 1649 | |
---|
| 1650 | //***************************************************************** |
---|
| 1651 | // indicates that current received data is the correct pattern. Check both |
---|
| 1652 | // rising and falling data for first DQ in each DQS group. Note that |
---|
| 1653 | // we're checking using a pipelined version of read data, so need to take |
---|
| 1654 | // this inherent delay into account in determining final read valid delay |
---|
| 1655 | // Data is written to the memory in the following order (first -> last): |
---|
| 1656 | // 0x1, 0xE, 0xE, 0x1, 0x1, 0xE, 0x1, 0xE |
---|
| 1657 | // Looking at the two LSb bits, expect data in sequence (in binary): |
---|
| 1658 | // bit[0]: 1, 0, 0, 1, 0, 1, 0, 1 |
---|
| 1659 | // bit[1]: 0, 1, 1, 0, 1, 0, 1, 0 |
---|
| 1660 | // Check for the presence of the first 7 words, and compensate read valid |
---|
| 1661 | // delay accordingly. Don't check last falling edge data, it may be |
---|
| 1662 | // corrupted by the DQS tri-state glitch at end of read postamble |
---|
| 1663 | // (glitch protection not yet active until stage 4 cal) |
---|
| 1664 | //***************************************************************** |
---|
| 1665 | |
---|
| 1666 | always @(posedge clkdiv) begin |
---|
| 1667 | rdd_rise_q1_r <= rdd_rise_q1; |
---|
| 1668 | rdd_fall_q1_r <= rdd_fall_q1; |
---|
| 1669 | rdd_rise_q2_r <= rdd_rise_q2; |
---|
| 1670 | rdd_fall_q2_r <= rdd_fall_q2; |
---|
| 1671 | rdd_rise_q1_r1 <= rdd_rise_q1_r; |
---|
| 1672 | rdd_fall_q1_r1 <= rdd_fall_q1_r; |
---|
| 1673 | // MIG 3.3: Added comparison for second bit in DQS group for stage 3 cal |
---|
| 1674 | rdd_rise_q1_bit1_r <= rdd_rise_q1_bit1; |
---|
| 1675 | rdd_fall_q1_bit1_r <= rdd_fall_q1_bit1; |
---|
| 1676 | rdd_rise_q2_bit1_r <= rdd_rise_q2_bit1; |
---|
| 1677 | rdd_fall_q2_bit1_r <= rdd_fall_q2_bit1; |
---|
| 1678 | rdd_rise_q1_bit1_r1 <= rdd_rise_q1_bit1_r; |
---|
| 1679 | rdd_fall_q1_bit1_r1 <= rdd_fall_q1_bit1_r; |
---|
| 1680 | end |
---|
| 1681 | |
---|
| 1682 | always @(posedge clkdiv) begin |
---|
| 1683 | // For the following sequence from memory: |
---|
| 1684 | // rise[0], fall[0], rise[1], fall[1] |
---|
| 1685 | // if data is aligned out of fabric ISERDES: |
---|
| 1686 | // RDD_RISE_Q2 = rise[0] |
---|
| 1687 | // RDD_FALL_Q2 = fall[0] |
---|
| 1688 | // RDD_RISE_Q1 = rise[1] |
---|
| 1689 | // RDD_FALL_Q1 = fall[1] |
---|
| 1690 | cal3_data_match <= ((rdd_rise_q2_r == 1) && |
---|
| 1691 | (rdd_fall_q2_r == 0) && |
---|
| 1692 | (rdd_rise_q1_r == 0) && |
---|
| 1693 | (rdd_fall_q1_r == 1) && |
---|
| 1694 | (rdd_rise_q2 == 0) && |
---|
| 1695 | (rdd_fall_q2 == 1) && |
---|
| 1696 | (rdd_rise_q1 == 0) && |
---|
| 1697 | (rdd_rise_q2_bit1_r == 0) && |
---|
| 1698 | (rdd_fall_q2_bit1_r == 1) && |
---|
| 1699 | (rdd_rise_q1_bit1_r == 1) && |
---|
| 1700 | (rdd_fall_q1_bit1_r == 0) && |
---|
| 1701 | (rdd_rise_q2_bit1 == 1) && |
---|
| 1702 | (rdd_fall_q2_bit1 == 0) && |
---|
| 1703 | (rdd_rise_q1_bit1 == 1)); |
---|
| 1704 | |
---|
| 1705 | // if data is staggered out of fabric ISERDES: |
---|
| 1706 | // RDD_RISE_Q1_R = rise[0] |
---|
| 1707 | // RDD_FALL_Q1_R = fall[0] |
---|
| 1708 | // RDD_RISE_Q2 = rise[1] |
---|
| 1709 | // RDD_FALL_Q2 = fall[1] |
---|
| 1710 | cal3_data_match_stgd <= ((rdd_rise_q1_r1 == 1) && |
---|
| 1711 | (rdd_fall_q1_r1 == 0) && |
---|
| 1712 | (rdd_rise_q2_r == 0) && |
---|
| 1713 | (rdd_fall_q2_r == 1) && |
---|
| 1714 | (rdd_rise_q1_r == 0) && |
---|
| 1715 | (rdd_fall_q1_r == 1) && |
---|
| 1716 | (rdd_rise_q2 == 0) && |
---|
| 1717 | (rdd_rise_q1_bit1_r1 == 0) && |
---|
| 1718 | (rdd_fall_q1_bit1_r1 == 1) && |
---|
| 1719 | (rdd_rise_q2_bit1_r == 1) && |
---|
| 1720 | (rdd_fall_q2_bit1_r == 0) && |
---|
| 1721 | (rdd_rise_q1_bit1_r == 1) && |
---|
| 1722 | (rdd_fall_q1_bit1_r == 0) && |
---|
| 1723 | (rdd_rise_q2_bit1 == 1)); |
---|
| 1724 | end |
---|
| 1725 | |
---|
| 1726 | assign cal3_rden_dly = cal3_rden_srl_a - CAL3_RDEN_SRL_DLY_DELTA; |
---|
| 1727 | assign cal3_data_valid = (calib_rden_valid | calib_rden_valid_stgd); |
---|
| 1728 | assign cal3_match_found |
---|
| 1729 | = ((calib_rden_valid && cal3_data_match) || |
---|
| 1730 | (calib_rden_valid_stgd && cal3_data_match_stgd)); |
---|
| 1731 | |
---|
| 1732 | // when calibrating, check to see which clock cycle (after the read is |
---|
| 1733 | // issued) does the expected data pattern arrive. Record this result |
---|
| 1734 | // NOTE: Can add error checking here in case valid data not found on any |
---|
| 1735 | // of the available pipeline stages |
---|
| 1736 | always @(posedge clkdiv) begin |
---|
| 1737 | if (rstdiv) begin |
---|
| 1738 | cal3_rden_srl_a <= 5'bxxxxx; |
---|
| 1739 | cal3_state <= CAL3_IDLE; |
---|
| 1740 | calib_done[2] <= 1'b0; |
---|
| 1741 | calib_err_2[0] <= 1'b0; |
---|
| 1742 | count_rden <= {DQS_WIDTH{1'b0}}; |
---|
| 1743 | rden_dly <= {5*DQS_WIDTH{1'b0}}; |
---|
| 1744 | end else begin |
---|
| 1745 | |
---|
| 1746 | case (cal3_state) |
---|
| 1747 | CAL3_IDLE: begin |
---|
| 1748 | count_rden <= {DQS_WIDTH{1'b0}}; |
---|
| 1749 | if (calib_start[2]) begin |
---|
| 1750 | calib_done[2] <= 1'b0; |
---|
| 1751 | cal3_state <= CAL3_INIT; |
---|
| 1752 | end |
---|
| 1753 | end |
---|
| 1754 | |
---|
| 1755 | CAL3_INIT: begin |
---|
| 1756 | cal3_rden_srl_a <= RDEN_BASE_DELAY; |
---|
| 1757 | // let SRL pipe clear after loading initial shift value |
---|
| 1758 | cal3_state <= CAL3_RDEN_PIPE_CLR_WAIT; |
---|
| 1759 | end |
---|
| 1760 | |
---|
| 1761 | CAL3_DETECT: |
---|
| 1762 | if (cal3_data_valid) |
---|
| 1763 | // if match found at the correct clock cycle |
---|
| 1764 | if (cal3_match_found) begin |
---|
| 1765 | |
---|
| 1766 | // For simulation, load SRL addresses for all DQS with same value |
---|
| 1767 | if (SIM_ONLY != 0) begin |
---|
| 1768 | for (i = 0; i < DQS_WIDTH; i = i + 1) begin: loop_sim_rden_dly |
---|
| 1769 | rden_dly[(i*5)] <= cal3_rden_dly[0]; |
---|
| 1770 | rden_dly[(i*5)+1] <= cal3_rden_dly[1]; |
---|
| 1771 | rden_dly[(i*5)+2] <= cal3_rden_dly[2]; |
---|
| 1772 | rden_dly[(i*5)+3] <= cal3_rden_dly[3]; |
---|
| 1773 | rden_dly[(i*5)+4] <= cal3_rden_dly[4]; |
---|
| 1774 | end |
---|
| 1775 | end else begin |
---|
| 1776 | rden_dly[(count_rden*5)] <= cal3_rden_dly[0]; |
---|
| 1777 | rden_dly[(count_rden*5)+1] <= cal3_rden_dly[1]; |
---|
| 1778 | rden_dly[(count_rden*5)+2] <= cal3_rden_dly[2]; |
---|
| 1779 | rden_dly[(count_rden*5)+3] <= cal3_rden_dly[3]; |
---|
| 1780 | rden_dly[(count_rden*5)+4] <= cal3_rden_dly[4]; |
---|
| 1781 | end |
---|
| 1782 | |
---|
| 1783 | // Use for stage 4 calibration |
---|
| 1784 | calib_rden_dly[(count_rden*5)] <= cal3_rden_srl_a[0]; |
---|
| 1785 | calib_rden_dly[(count_rden*5)+1] <= cal3_rden_srl_a[1]; |
---|
| 1786 | calib_rden_dly[(count_rden*5)+2] <= cal3_rden_srl_a[2]; |
---|
| 1787 | calib_rden_dly[(count_rden*5)+3] <= cal3_rden_srl_a[3]; |
---|
| 1788 | calib_rden_dly[(count_rden*5)+4] <= cal3_rden_srl_a[4]; |
---|
| 1789 | cal3_state <= CAL3_DONE; |
---|
| 1790 | end else begin |
---|
| 1791 | // If we run out of stages to shift, without finding correct |
---|
| 1792 | // result, the stop and assert error |
---|
| 1793 | if (cal3_rden_srl_a == 5'b11111) begin |
---|
| 1794 | calib_err_2[0] <= 1'b1; |
---|
| 1795 | cal3_state <= CAL3_IDLE; |
---|
| 1796 | end else begin |
---|
| 1797 | // otherwise, increase the shift value and try again |
---|
| 1798 | cal3_rden_srl_a <= cal3_rden_srl_a + 1; |
---|
| 1799 | cal3_state <= CAL3_RDEN_PIPE_CLR_WAIT; |
---|
| 1800 | end |
---|
| 1801 | end |
---|
| 1802 | |
---|
| 1803 | // give additional time for RDEN_R pipe to clear from effects of |
---|
| 1804 | // previous pipeline or IDELAY tap change |
---|
| 1805 | CAL3_RDEN_PIPE_CLR_WAIT: |
---|
| 1806 | if (calib_rden_pipe_cnt == 5'b00000) |
---|
| 1807 | cal3_state <= CAL3_DETECT; |
---|
| 1808 | |
---|
| 1809 | CAL3_DONE: begin |
---|
| 1810 | if ((count_rden == DQS_WIDTH-1) || (SIM_ONLY != 0)) begin |
---|
| 1811 | calib_done[2] <= 1'b1; |
---|
| 1812 | cal3_state <= CAL3_IDLE; |
---|
| 1813 | end else begin |
---|
| 1814 | count_rden <= count_rden + 1; |
---|
| 1815 | cal3_state <= CAL3_INIT; |
---|
| 1816 | end |
---|
| 1817 | end |
---|
| 1818 | endcase |
---|
| 1819 | end |
---|
| 1820 | end |
---|
| 1821 | |
---|
| 1822 | //***************************************************************** |
---|
| 1823 | // Last part of stage 3 calibration - compensate for differences |
---|
| 1824 | // in delay between different DQS groups. Assume that in the worst |
---|
| 1825 | // case, DQS groups can only differ by one clock cycle. Data for |
---|
| 1826 | // certain DQS groups must be delayed by one clock cycle. |
---|
| 1827 | // NOTE: May need to increase allowable variation to greater than |
---|
| 1828 | // one clock cycle in certain customer designs. |
---|
| 1829 | // Algorithm is: |
---|
| 1830 | // 1. Record shift delay value for DQS[0] |
---|
| 1831 | // 2. Compare each DQS[x] delay value to that of DQS[0]: |
---|
| 1832 | // - If different, than record this fact (RDEN_MUX) |
---|
| 1833 | // - If greater than DQS[0], set RDEN_INC. Assume greater by |
---|
| 1834 | // one clock cycle only - this is a key assumption, assume no |
---|
| 1835 | // more than a one clock cycle variation. |
---|
| 1836 | // - If less than DQS[0], set RDEN_DEC |
---|
| 1837 | // 3. After calibration is complete, set control for DQS group |
---|
| 1838 | // delay (CALIB_RDEN_SEL): |
---|
| 1839 | // - If RDEN_DEC = 1, then assume that DQS[0] is the lowest |
---|
| 1840 | // delay (and at least one other DQS group has a higher |
---|
| 1841 | // delay). |
---|
| 1842 | // - If RDEN_INC = 1, then assume that DQS[0] is the highest |
---|
| 1843 | // delay (and that all other DQS groups have the same or |
---|
| 1844 | // lower delay). |
---|
| 1845 | // - If both RDEN_INC and RDEN_DEC = 1, then flag error |
---|
| 1846 | // (variation is too high for this algorithm to handle) |
---|
| 1847 | //***************************************************************** |
---|
| 1848 | |
---|
| 1849 | always @(posedge clkdiv) begin |
---|
| 1850 | if (rstdiv) begin |
---|
| 1851 | calib_err_2[1] <= 1'b0; |
---|
| 1852 | calib_rden_sel <= {DQS_WIDTH{1'bx}}; |
---|
| 1853 | rden_dec <= 1'b0; |
---|
| 1854 | rden_dly_0 <= 5'bxxxxx; |
---|
| 1855 | rden_inc <= 1'b0; |
---|
| 1856 | rden_mux <= {DQS_WIDTH{1'b0}}; |
---|
| 1857 | end else begin |
---|
| 1858 | // if a match if found, then store the value of rden_dly |
---|
| 1859 | if (!calib_done[2]) begin |
---|
| 1860 | if ((cal3_state == CAL3_DETECT) && cal3_match_found) begin |
---|
| 1861 | // store the value for DQS[0] as a reference |
---|
| 1862 | if (count_rden == 0) begin |
---|
| 1863 | // for simulation, RDEN calibration only happens for DQS[0] |
---|
| 1864 | // set RDEN_MUX for all DQS groups to be the same as DQS[0] |
---|
| 1865 | if (SIM_ONLY != 0) |
---|
| 1866 | rden_mux <= {DQS_WIDTH{1'b0}}; |
---|
| 1867 | else begin |
---|
| 1868 | // otherwise, load values for DQS[0] |
---|
| 1869 | rden_dly_0 <= cal3_rden_srl_a; |
---|
| 1870 | rden_mux[0] <= 1'b0; |
---|
| 1871 | end |
---|
| 1872 | end else if (SIM_ONLY == 0) begin |
---|
| 1873 | // for all other DQS groups, compare RDEN_DLY delay value with |
---|
| 1874 | // that of DQS[0] |
---|
| 1875 | if (rden_dly_0 != cal3_rden_srl_a) begin |
---|
| 1876 | // record that current DQS group has a different delay |
---|
| 1877 | // than DQS[0] (the "reference" DQS group) |
---|
| 1878 | rden_mux[count_rden] <= 1'b1; |
---|
| 1879 | if (rden_dly_0 > cal3_rden_srl_a) |
---|
| 1880 | rden_inc <= 1'b1; |
---|
| 1881 | else if (rden_dly_0 < cal3_rden_srl_a) |
---|
| 1882 | rden_dec <= 1'b1; |
---|
| 1883 | // otherwise, if current DQS group has same delay as DQS[0], |
---|
| 1884 | // then rden_mux[count_rden] remains at 0 (since rden_mux |
---|
| 1885 | // array contents initialized to 0) |
---|
| 1886 | end |
---|
| 1887 | end |
---|
| 1888 | end |
---|
| 1889 | end else begin |
---|
| 1890 | // Otherwise - if we're done w/ stage 2 calibration: |
---|
| 1891 | // set final value for RDEN data delay |
---|
| 1892 | // flag error if there's more than one cycle variation from DQS[0] |
---|
| 1893 | calib_err_2[1] <= (rden_inc && rden_dec); |
---|
| 1894 | if (rden_inc) |
---|
| 1895 | // if DQS[0] delay represents max delay |
---|
| 1896 | calib_rden_sel <= ~rden_mux; |
---|
| 1897 | else |
---|
| 1898 | // if DQS[0] delay represents min delay (or all the delays are |
---|
| 1899 | // the same between DQS groups) |
---|
| 1900 | calib_rden_sel <= rden_mux; |
---|
| 1901 | end |
---|
| 1902 | end |
---|
| 1903 | end |
---|
| 1904 | |
---|
| 1905 | // flag error for stage 3 if appropriate |
---|
| 1906 | always @(posedge clkdiv) |
---|
| 1907 | calib_err[2] <= calib_err_2[0] | calib_err_2[1]; |
---|
| 1908 | |
---|
| 1909 | //*************************************************************************** |
---|
| 1910 | // Stage 4 calibration: DQS gate |
---|
| 1911 | //*************************************************************************** |
---|
| 1912 | |
---|
| 1913 | //***************************************************************** |
---|
| 1914 | // indicates that current received data is the correct pattern. Same as |
---|
| 1915 | // for READ VALID calibration, except that the expected data sequence is |
---|
| 1916 | // different since DQS gate is asserted after the 6th word. |
---|
| 1917 | // Data sequence: |
---|
| 1918 | // Arrives from memory (at FPGA input) (R, F): 1 0 0 1 1 0 0 1 |
---|
| 1919 | // After gating the sequence looks like: 1 0 0 1 1 0 1 0 (7th word = |
---|
| 1920 | // 5th word, 8th word = 6th word) |
---|
| 1921 | // What is the gate timing is off? Need to make sure we can distinquish |
---|
| 1922 | // between the results of correct vs. incorrect gate timing. We also use |
---|
| 1923 | // the "read_valid" signal from stage 3 calibration to help us determine |
---|
| 1924 | // when to check for a valid sequence for stage 4 calibration (i.e. use |
---|
| 1925 | // CAL4_DATA_VALID in addition to CAL4_DATA_MATCH/CAL4_DATA_MATCH_STGD) |
---|
| 1926 | // Note that since the gate signal from the CLK0 domain is synchronized |
---|
| 1927 | // to the falling edge of DQS, that the effect of the gate will only be |
---|
| 1928 | // seen starting with a rising edge data (although it is possible |
---|
| 1929 | // the GATE IDDR output could go metastable and cause a unexpected result |
---|
| 1930 | // on the first rising and falling edges after the gate is enabled). |
---|
| 1931 | // Also note that the actual DQS glitch can come more than 0.5*tCK after |
---|
| 1932 | // the last falling edge of DQS and the constraint for this path is can |
---|
| 1933 | // be > 0.5*tCK; however, this means when calibrating, the output of the |
---|
| 1934 | // GATE IDDR may miss the setup time requirement of the rising edge flop |
---|
| 1935 | // and only meet it for the falling edge flop. Therefore the rising |
---|
| 1936 | // edge data immediately following the assertion of the gate can either |
---|
| 1937 | // be a 1 or 0 (can rely on either) |
---|
| 1938 | // As the timing on the gate is varied, we expect to see (sequence of |
---|
| 1939 | // captured read data shown below): |
---|
| 1940 | // - 1 0 0 1 1 0 0 1 (gate is really early, starts and ends before |
---|
| 1941 | // read burst even starts) |
---|
| 1942 | // - x 0 0 1 1 0 0 1 (gate pulse starts before the burst, and ends |
---|
| 1943 | // - x y 0 1 1 0 0 1 sometime during the burst; x,y = 0, or 1, but |
---|
| 1944 | // - x y x 1 1 0 0 1 all bits that show an x are the same value, |
---|
| 1945 | // - x y x y 1 0 0 1 and y are the same value) |
---|
| 1946 | // - x y x y x 0 0 1 |
---|
| 1947 | // - x y x y x y 0 1 (gate starts just before start of burst) |
---|
| 1948 | // - 1 0 x 0 x 0 x 0 (gate starts after 1st falling word. The "x" |
---|
| 1949 | // represents possiblity that gate may not disable |
---|
| 1950 | // clock for 2nd rising word in time) |
---|
| 1951 | // - 1 0 0 1 x 1 x 1 (gate starts after 2nd falling word) |
---|
| 1952 | // - 1 0 0 1 1 0 x 0 (gate starts after 3rd falling word - GOOD!!) |
---|
| 1953 | // - 1 0 0 1 1 0 0 1 (gate starts after burst is already done) |
---|
| 1954 | //***************************************************************** |
---|
| 1955 | |
---|
| 1956 | assign cal4_data_valid = calib_rden_valid | calib_rden_valid_stgd; |
---|
| 1957 | assign cal4_data_good = (calib_rden_valid & |
---|
| 1958 | cal4_data_match) | |
---|
| 1959 | (calib_rden_valid_stgd & |
---|
| 1960 | cal4_data_match_stgd); |
---|
| 1961 | |
---|
| 1962 | always @(posedge clkdiv) begin |
---|
| 1963 | // if data is aligned out of fabric ISERDES: |
---|
| 1964 | cal4_data_match <= ((rdd_rise_q2_r == 1) && |
---|
| 1965 | (rdd_fall_q2_r == 0) && |
---|
| 1966 | (rdd_rise_q1_r == 0) && |
---|
| 1967 | (rdd_fall_q1_r == 1) && |
---|
| 1968 | (rdd_rise_q2 == 1) && |
---|
| 1969 | (rdd_fall_q2 == 0) && |
---|
| 1970 | // MIG 2.1: Last rising edge data value not |
---|
| 1971 | // guaranteed to be certain value at higher |
---|
| 1972 | // frequencies |
---|
| 1973 | // (rdd_rise_q1 == 0) && |
---|
| 1974 | (rdd_fall_q1 == 0)); |
---|
| 1975 | // if data is staggered out of fabric ISERDES: |
---|
| 1976 | cal4_data_match_stgd <= ((rdd_rise_q1_r1 == 1) && |
---|
| 1977 | (rdd_fall_q1_r1 == 0) && |
---|
| 1978 | (rdd_rise_q2_r == 0) && |
---|
| 1979 | (rdd_fall_q2_r == 1) && |
---|
| 1980 | (rdd_rise_q1_r == 1) && |
---|
| 1981 | (rdd_fall_q1_r == 0) && |
---|
| 1982 | // MIG 2.1: Last rising edge data value not |
---|
| 1983 | // guaranteed to be certain value at higher |
---|
| 1984 | // frequencies |
---|
| 1985 | // (rdd_rise_q2 == 0) && |
---|
| 1986 | (rdd_fall_q2 == 0)); |
---|
| 1987 | end |
---|
| 1988 | |
---|
| 1989 | //***************************************************************** |
---|
| 1990 | // DQS gate enable generation: |
---|
| 1991 | // This signal gets synchronized to DQS domain, and drives IDDR |
---|
| 1992 | // register that in turn asserts/deasserts CE to all 4 or 8 DQ |
---|
| 1993 | // IDDR's in that DQS group. |
---|
| 1994 | // 1. During normal (post-cal) operation, this is only for 2 clock |
---|
| 1995 | // cycles following the end of a burst. Check for falling edge |
---|
| 1996 | // of RDEN. But must also make sure NOT assert for a read-idle- |
---|
| 1997 | // read (two non-consecutive reads, separated by exactly one |
---|
| 1998 | // idle cycle) - in this case, don't assert the gate because: |
---|
| 1999 | // (1) we don't have enough time to deassert the gate before the |
---|
| 2000 | // first rising edge of DQS for second burst (b/c of fact |
---|
| 2001 | // that DQS gate is generated in the fabric only off rising |
---|
| 2002 | // edge of CLK0 - if we somehow had an ODDR in fabric, we |
---|
| 2003 | // could pull this off, (2) assumption is that the DQS glitch |
---|
| 2004 | // will not rise enough to cause a glitch because the |
---|
| 2005 | // post-amble of the first burst is followed immediately by |
---|
| 2006 | // the pre-amble of the next burst |
---|
| 2007 | // 2. During stage 4 calibration, assert for 3 clock cycles |
---|
| 2008 | // (assert gate enable one clock cycle early), since we gate out |
---|
| 2009 | // the last two words (in addition to the crap on the DQ bus after |
---|
| 2010 | // the DQS read postamble). |
---|
| 2011 | // NOTE: PHY_INIT_RDEN and CTRL_RDEN have slightly different timing w/r |
---|
| 2012 | // to when they are asserted w/r to the start of the read burst |
---|
| 2013 | // (PHY_INIT_RDEN is one cycle earlier than CTRL_RDEN). |
---|
| 2014 | //***************************************************************** |
---|
| 2015 | |
---|
| 2016 | // register for timing purposes for fast clock path - currently only |
---|
| 2017 | // calib_done_r[2] used |
---|
| 2018 | always @(posedge clk) |
---|
| 2019 | calib_done_r <= calib_done; |
---|
| 2020 | |
---|
| 2021 | always @(*) begin |
---|
| 2022 | calib_ctrl_rden = ctrl_rden; |
---|
| 2023 | calib_init_rden = calib_done_r[2] & phy_init_rden; |
---|
| 2024 | end |
---|
| 2025 | |
---|
| 2026 | assign calib_ctrl_rden_negedge = ~calib_ctrl_rden & calib_ctrl_rden_r; |
---|
| 2027 | // check for read-idle-read before asserting DQS pulse at end of read |
---|
| 2028 | assign calib_ctrl_gate_pulse = calib_ctrl_rden_negedge_r & |
---|
| 2029 | ~calib_ctrl_rden; |
---|
| 2030 | always @(posedge clk) begin |
---|
| 2031 | calib_ctrl_rden_r <= calib_ctrl_rden; |
---|
| 2032 | calib_ctrl_rden_negedge_r <= calib_ctrl_rden_negedge; |
---|
| 2033 | calib_ctrl_gate_pulse_r <= calib_ctrl_gate_pulse; |
---|
| 2034 | end |
---|
| 2035 | |
---|
| 2036 | assign calib_init_gate_pulse = ~calib_init_rden & calib_init_rden_r; |
---|
| 2037 | always @(posedge clk) begin |
---|
| 2038 | calib_init_rden_r <= calib_init_rden; |
---|
| 2039 | calib_init_gate_pulse_r <= calib_init_gate_pulse; |
---|
| 2040 | calib_init_gate_pulse_r1 <= calib_init_gate_pulse_r; |
---|
| 2041 | end |
---|
| 2042 | |
---|
| 2043 | // Gate is asserted: (1) during cal, for 3 cycles, starting 1 cycle |
---|
| 2044 | // after falling edge of CTRL_RDEN, (2) during normal ops, for 2 |
---|
| 2045 | // cycles, starting 2 cycles after falling edge of CTRL_RDEN |
---|
| 2046 | assign gate_srl_in = ~((calib_ctrl_gate_pulse | |
---|
| 2047 | calib_ctrl_gate_pulse_r) | |
---|
| 2048 | (calib_init_gate_pulse | |
---|
| 2049 | calib_init_gate_pulse_r | |
---|
| 2050 | calib_init_gate_pulse_r1)); |
---|
| 2051 | |
---|
| 2052 | //***************************************************************** |
---|
| 2053 | // generate DQS enable signal for each DQS group |
---|
| 2054 | // There are differences between DQS gate signal for calibration vs. during |
---|
| 2055 | // normal operation: |
---|
| 2056 | // * calibration gates the second to last clock cycle of the burst, |
---|
| 2057 | // rather than after the last word (e.g. for a 8-word, 4-cycle burst, |
---|
| 2058 | // cycle 4 is gated for calibration; during normal operation, cycle |
---|
| 2059 | // 5 (i.e. cycle after the last word) is gated) |
---|
| 2060 | // enable for DQS is deasserted for two clock cycles, except when |
---|
| 2061 | // we have the preamble for the next read immediately following |
---|
| 2062 | // the postamble of the current read - assume DQS does not glitch |
---|
| 2063 | // during this time, that it stays low. Also if we did have to gate |
---|
| 2064 | // the DQS for this case, then we don't have enough time to deassert |
---|
| 2065 | // the gate in time for the first rising edge of DQS for the second |
---|
| 2066 | // read |
---|
| 2067 | //***************************************************************** |
---|
| 2068 | |
---|
| 2069 | // Flops for targetting of multi-cycle path in UCF |
---|
| 2070 | genvar gate_ff_i; |
---|
| 2071 | generate |
---|
| 2072 | for (gate_ff_i = 0; gate_ff_i < 5*DQS_WIDTH; |
---|
| 2073 | gate_ff_i = gate_ff_i+1) begin: gen_gate_dly |
---|
| 2074 | FDRSE u_ff_gate_dly |
---|
| 2075 | ( |
---|
| 2076 | .Q (gate_dly_r[gate_ff_i]), |
---|
| 2077 | .C (clkdiv), |
---|
| 2078 | .CE (1'b1), |
---|
| 2079 | .D (gate_dly[gate_ff_i]), |
---|
| 2080 | .R (1'b0), |
---|
| 2081 | .S (1'b0) |
---|
| 2082 | ) /* synthesis syn_preserve = 1 */ |
---|
| 2083 | /* synthesis syn_replicate = 0 */; |
---|
| 2084 | end |
---|
| 2085 | endgenerate |
---|
| 2086 | |
---|
| 2087 | genvar gate_i; |
---|
| 2088 | generate |
---|
| 2089 | for (gate_i = 0; gate_i < DQS_WIDTH; gate_i = gate_i + 1) begin: gen_gate |
---|
| 2090 | SRLC32E u_gate_srl |
---|
| 2091 | ( |
---|
| 2092 | .Q (gate_srl_out[gate_i]), |
---|
| 2093 | .Q31 (), |
---|
| 2094 | .A ({gate_dly_r[(gate_i*5)+4], |
---|
| 2095 | gate_dly_r[(gate_i*5)+3], |
---|
| 2096 | gate_dly_r[(gate_i*5)+2], |
---|
| 2097 | gate_dly_r[(gate_i*5)+1], |
---|
| 2098 | gate_dly_r[(gate_i*5)]}), |
---|
| 2099 | .CE (1'b1), |
---|
| 2100 | .CLK (clk), |
---|
| 2101 | .D (gate_srl_in) |
---|
| 2102 | ); |
---|
| 2103 | |
---|
| 2104 | // For GATE_BASE_DELAY > 0, have one extra cycle to register outputs |
---|
| 2105 | // from controller before generating DQS gate pulse. In PAR, the |
---|
| 2106 | // location of the controller logic can be far from the DQS gate |
---|
| 2107 | // logic (DQS gate logic located near the DQS I/O's), contributing |
---|
| 2108 | // to large net delays. Registering the controller outputs for |
---|
| 2109 | // CL >= 4 (above 200MHz) adds a stage of pipelining to reduce net |
---|
| 2110 | // delays |
---|
| 2111 | if (GATE_BASE_DELAY > 0) begin: gen_gate_base_dly_gt3 |
---|
| 2112 | // add flop between SRL32 and EN_DQS flop (which is located near the |
---|
| 2113 | // DDR2 IOB's) |
---|
| 2114 | FDRSE u_gate_srl_ff |
---|
| 2115 | ( |
---|
| 2116 | .Q (gate_srl_out_r[gate_i]), |
---|
| 2117 | .C (clk), |
---|
| 2118 | .CE (1'b1), |
---|
| 2119 | .D (gate_srl_out[gate_i]), |
---|
| 2120 | .R (1'b0), |
---|
| 2121 | .S (1'b0) |
---|
| 2122 | ) /* synthesis syn_preserve = 1 */; |
---|
| 2123 | end else begin: gen_gate_base_dly_le3 |
---|
| 2124 | assign gate_srl_out_r[gate_i] = gate_srl_out[gate_i]; |
---|
| 2125 | end |
---|
| 2126 | |
---|
| 2127 | FDRSE u_en_dqs_ff |
---|
| 2128 | ( |
---|
| 2129 | .Q (en_dqs[gate_i]), |
---|
| 2130 | .C (clk), |
---|
| 2131 | .CE (1'b1), |
---|
| 2132 | .D (gate_srl_out_r[gate_i]), |
---|
| 2133 | .R (1'b0), |
---|
| 2134 | .S (1'b0) |
---|
| 2135 | ) /* synthesis syn_preserve = 1 */ |
---|
| 2136 | /* synthesis syn_replicate = 0 */; |
---|
| 2137 | end |
---|
| 2138 | endgenerate |
---|
| 2139 | |
---|
| 2140 | //***************************************************************** |
---|
| 2141 | // Find valid window: keep track of how long we've been in the same data |
---|
| 2142 | // window. If it's been long enough, then declare that we've found a stable |
---|
| 2143 | // valid window - in particular, that we're past any region of instability |
---|
| 2144 | // associated with the edge of the window. Use only when finding left edge |
---|
| 2145 | //***************************************************************** |
---|
| 2146 | |
---|
| 2147 | always @(posedge clkdiv) |
---|
| 2148 | // reset before we start to look for window |
---|
| 2149 | if (cal4_state == CAL4_INIT) begin |
---|
| 2150 | cal4_window_cnt <= 4'b0000; |
---|
| 2151 | cal4_stable_window <= 1'b0; |
---|
| 2152 | end else if ((cal4_state == CAL4_FIND_EDGE) && cal4_seek_left) begin |
---|
| 2153 | // if we're looking for left edge, and incrementing IDELAY, count |
---|
| 2154 | // consecutive taps over which we're in the window |
---|
| 2155 | if (cal4_data_valid) begin |
---|
| 2156 | if (cal4_data_good) |
---|
| 2157 | cal4_window_cnt <= cal4_window_cnt + 1; |
---|
| 2158 | else |
---|
| 2159 | cal4_window_cnt <= 4'b0000; |
---|
| 2160 | end |
---|
| 2161 | |
---|
| 2162 | if (cal4_window_cnt == MIN_WIN_SIZE-1) |
---|
| 2163 | cal4_stable_window <= 1'b1; |
---|
| 2164 | end |
---|
| 2165 | |
---|
| 2166 | //***************************************************************** |
---|
| 2167 | // keep track of edge tap counts found, and whether we've |
---|
| 2168 | // incremented to the maximum number of taps allowed |
---|
| 2169 | //***************************************************************** |
---|
| 2170 | |
---|
| 2171 | always @(posedge clkdiv) |
---|
| 2172 | if ((cal4_state == CAL4_INIT) || cal4_dlyrst_gate) begin |
---|
| 2173 | cal4_idel_max_tap <= 1'b0; |
---|
| 2174 | cal4_idel_bit_tap <= 1'b0; |
---|
| 2175 | cal4_idel_tap_cnt <= 6'b000000; |
---|
| 2176 | end else if (cal4_dlyce_gate) begin |
---|
| 2177 | if (cal4_dlyinc_gate) begin |
---|
| 2178 | cal4_idel_tap_cnt <= cal4_idel_tap_cnt + 1; |
---|
| 2179 | cal4_idel_bit_tap <= (cal4_idel_tap_cnt == CAL4_IDEL_BIT_VAL-2); |
---|
| 2180 | cal4_idel_max_tap <= (cal4_idel_tap_cnt == 6'b111110); |
---|
| 2181 | end else begin |
---|
| 2182 | cal4_idel_tap_cnt <= cal4_idel_tap_cnt - 1; |
---|
| 2183 | cal4_idel_bit_tap <= 1'b0; |
---|
| 2184 | cal4_idel_max_tap <= 1'b0; |
---|
| 2185 | end |
---|
| 2186 | end |
---|
| 2187 | |
---|
| 2188 | always @(posedge clkdiv) |
---|
| 2189 | if ((cal4_state != CAL4_RDEN_PIPE_CLR_WAIT) && |
---|
| 2190 | (cal3_state != CAL3_RDEN_PIPE_CLR_WAIT)) |
---|
| 2191 | calib_rden_pipe_cnt <= CALIB_RDEN_PIPE_LEN-1; |
---|
| 2192 | else |
---|
| 2193 | calib_rden_pipe_cnt <= calib_rden_pipe_cnt - 1; |
---|
| 2194 | |
---|
| 2195 | //***************************************************************** |
---|
| 2196 | // Stage 4 cal state machine |
---|
| 2197 | //***************************************************************** |
---|
| 2198 | |
---|
| 2199 | always @(posedge clkdiv) |
---|
| 2200 | if (rstdiv) begin |
---|
| 2201 | calib_done[3] <= 1'b0; |
---|
| 2202 | calib_done_tmp[3] <= 1'b0; |
---|
| 2203 | calib_err[3] <= 1'b0; |
---|
| 2204 | count_gate <= 'b0; |
---|
| 2205 | gate_dly <= 'b0; |
---|
| 2206 | next_count_gate <= 'b0; |
---|
| 2207 | cal4_idel_adj_cnt <= 6'bxxxxxx; |
---|
| 2208 | cal4_dlyce_gate <= 1'b0; |
---|
| 2209 | cal4_dlyinc_gate <= 1'b0; |
---|
| 2210 | cal4_dlyrst_gate <= 1'b0; // reset handled elsewhere in code |
---|
| 2211 | cal4_gate_srl_a <= 5'bxxxxx; |
---|
| 2212 | cal4_rden_srl_a <= 5'bxxxxx; |
---|
| 2213 | cal4_ref_req <= 1'b0; |
---|
| 2214 | cal4_seek_left <= 1'bx; |
---|
| 2215 | cal4_state <= CAL4_IDLE; |
---|
| 2216 | end else begin |
---|
| 2217 | cal4_ref_req <= 1'b0; |
---|
| 2218 | cal4_dlyce_gate <= 1'b0; |
---|
| 2219 | cal4_dlyinc_gate <= 1'b0; |
---|
| 2220 | cal4_dlyrst_gate <= 1'b0; |
---|
| 2221 | |
---|
| 2222 | case (cal4_state) |
---|
| 2223 | CAL4_IDLE: begin |
---|
| 2224 | count_gate <= 'b0; |
---|
| 2225 | next_count_gate <= 'b0; |
---|
| 2226 | if (calib_start[3]) begin |
---|
| 2227 | gate_dly <= 'b0; |
---|
| 2228 | calib_done[3] <= 1'b0; |
---|
| 2229 | cal4_state <= CAL4_INIT; |
---|
| 2230 | end |
---|
| 2231 | end |
---|
| 2232 | |
---|
| 2233 | CAL4_INIT: begin |
---|
| 2234 | // load: (1) initial value of gate delay SRL, (2) appropriate |
---|
| 2235 | // value of RDEN SRL (so that we get correct "data valid" timing) |
---|
| 2236 | cal4_gate_srl_a <= GATE_BASE_INIT; |
---|
| 2237 | cal4_rden_srl_a <= {calib_rden_dly[(count_gate*5)+4], |
---|
| 2238 | calib_rden_dly[(count_gate*5)+3], |
---|
| 2239 | calib_rden_dly[(count_gate*5)+2], |
---|
| 2240 | calib_rden_dly[(count_gate*5)+1], |
---|
| 2241 | calib_rden_dly[(count_gate*5)]}; |
---|
| 2242 | // let SRL pipe clear after loading initial shift value |
---|
| 2243 | cal4_state <= CAL4_RDEN_PIPE_CLR_WAIT; |
---|
| 2244 | end |
---|
| 2245 | |
---|
| 2246 | // sort of an initial state - start checking to see whether we're |
---|
| 2247 | // already in the window or not |
---|
| 2248 | CAL4_FIND_WINDOW: |
---|
| 2249 | // decide right away if we start in the proper window - this |
---|
| 2250 | // determines if we are then looking for the left (trailing) or |
---|
| 2251 | // right (leading) edge of the data valid window |
---|
| 2252 | if (cal4_data_valid) begin |
---|
| 2253 | // if we find a match - then we're already in window, now look |
---|
| 2254 | // for left edge. Otherwise, look for right edge of window |
---|
| 2255 | cal4_seek_left <= cal4_data_good; |
---|
| 2256 | cal4_state <= CAL4_FIND_EDGE; |
---|
| 2257 | end |
---|
| 2258 | |
---|
| 2259 | CAL4_FIND_EDGE: |
---|
| 2260 | // don't do anything until the exact clock cycle when to check that |
---|
| 2261 | // readback data is valid or not |
---|
| 2262 | if (cal4_data_valid) begin |
---|
| 2263 | // we're currently in the window, look for left edge of window |
---|
| 2264 | if (cal4_seek_left) begin |
---|
| 2265 | // make sure we've passed the right edge before trying to detect |
---|
| 2266 | // the left edge (i.e. avoid any edge "instability") - else, we |
---|
| 2267 | // may detect an "false" edge too soon. By design, if we start in |
---|
| 2268 | // the data valid window, always expect at least |
---|
| 2269 | // MIN(BIT_TIME_TAPS,32) (-/+ jitter, see below) taps of valid |
---|
| 2270 | // window before we hit the left edge (this is because when stage |
---|
| 2271 | // 4 calibration first begins (i.e., gate_dly = 00, and IDELAY = |
---|
| 2272 | // 00), we're guaranteed to NOT be in the window, and we always |
---|
| 2273 | // start searching for MIN(BIT_TIME_TAPS,32) for the right edge |
---|
| 2274 | // of window. If we don't find it, increment gate_dly, and if we |
---|
| 2275 | // now start in the window, we have at least approximately |
---|
| 2276 | // CLK_PERIOD-MIN(BIT_TIME_TAPS,32) = MIN(BIT_TIME_TAPS,32) taps. |
---|
| 2277 | // It's approximately because jitter, noise, etc. can bring this |
---|
| 2278 | // value down slightly. Because of this (although VERY UNLIKELY), |
---|
| 2279 | // we have to protect against not decrementing IDELAY below 0 |
---|
| 2280 | // during adjustment phase). |
---|
| 2281 | if (cal4_stable_window && !cal4_data_good) begin |
---|
| 2282 | // found left edge of window, dec by MIN(BIT_TIME_TAPS,32) |
---|
| 2283 | cal4_idel_adj_cnt <= CAL4_IDEL_BIT_VAL; |
---|
| 2284 | cal4_idel_adj_inc <= 1'b0; |
---|
| 2285 | cal4_state <= CAL4_ADJ_IDEL; |
---|
| 2286 | end else begin |
---|
| 2287 | // Otherwise, keep looking for left edge: |
---|
| 2288 | if (cal4_idel_max_tap) begin |
---|
| 2289 | // ran out of taps looking for left edge (max=63) - happens |
---|
| 2290 | // for low frequency case, decrement by 32 |
---|
| 2291 | cal4_idel_adj_cnt <= 6'b100000; |
---|
| 2292 | cal4_idel_adj_inc <= 1'b0; |
---|
| 2293 | cal4_state <= CAL4_ADJ_IDEL; |
---|
| 2294 | end else begin |
---|
| 2295 | cal4_dlyce_gate <= 1'b1; |
---|
| 2296 | cal4_dlyinc_gate <= 1'b1; |
---|
| 2297 | cal4_state <= CAL4_IDEL_WAIT; |
---|
| 2298 | end |
---|
| 2299 | end |
---|
| 2300 | end else begin |
---|
| 2301 | // looking for right edge of window: |
---|
| 2302 | // look for the first match - this means we've found the right |
---|
| 2303 | // (leading) edge of the data valid window, increment by |
---|
| 2304 | // MIN(BIT_TIME_TAPS,32) |
---|
| 2305 | if (cal4_data_good) begin |
---|
| 2306 | cal4_idel_adj_cnt <= CAL4_IDEL_BIT_VAL; |
---|
| 2307 | cal4_idel_adj_inc <= 1'b1; |
---|
| 2308 | cal4_state <= CAL4_ADJ_IDEL; |
---|
| 2309 | end else begin |
---|
| 2310 | // Otherwise, keep looking: |
---|
| 2311 | // only look for MIN(BIT_TIME_TAPS,32) taps for right edge, |
---|
| 2312 | // if we haven't found it, then inc gate delay, try again |
---|
| 2313 | if (cal4_idel_bit_tap) begin |
---|
| 2314 | // if we're already maxed out on gate delay, then error out |
---|
| 2315 | // (simulation only - calib_err isn't currently connected) |
---|
| 2316 | if (cal4_gate_srl_a == 5'b11111) begin |
---|
| 2317 | calib_err[3] <= 1'b1; |
---|
| 2318 | cal4_state <= CAL4_IDLE; |
---|
| 2319 | end else begin |
---|
| 2320 | // otherwise, increment gate delay count, and start |
---|
| 2321 | // over again |
---|
| 2322 | cal4_gate_srl_a <= cal4_gate_srl_a + 1; |
---|
| 2323 | cal4_dlyrst_gate <= 1'b1; |
---|
| 2324 | cal4_state <= CAL4_RDEN_PIPE_CLR_WAIT; |
---|
| 2325 | end |
---|
| 2326 | end else begin |
---|
| 2327 | // keep looking for right edge |
---|
| 2328 | cal4_dlyce_gate <= 1'b1; |
---|
| 2329 | cal4_dlyinc_gate <= 1'b1; |
---|
| 2330 | cal4_state <= CAL4_IDEL_WAIT; |
---|
| 2331 | end |
---|
| 2332 | end |
---|
| 2333 | end |
---|
| 2334 | end |
---|
| 2335 | |
---|
| 2336 | // wait for GATE IDELAY to settle, after reset or increment |
---|
| 2337 | CAL4_IDEL_WAIT: begin |
---|
| 2338 | // For simulation, load SRL addresses for all DQS with same value |
---|
| 2339 | if (SIM_ONLY != 0) begin |
---|
| 2340 | for (i = 0; i < DQS_WIDTH; i = i + 1) begin: loop_sim_gate_dly |
---|
| 2341 | gate_dly[(i*5)+4] <= cal4_gate_srl_a[4]; |
---|
| 2342 | gate_dly[(i*5)+3] <= cal4_gate_srl_a[3]; |
---|
| 2343 | gate_dly[(i*5)+2] <= cal4_gate_srl_a[2]; |
---|
| 2344 | gate_dly[(i*5)+1] <= cal4_gate_srl_a[1]; |
---|
| 2345 | gate_dly[(i*5)] <= cal4_gate_srl_a[0]; |
---|
| 2346 | end |
---|
| 2347 | end else begin |
---|
| 2348 | gate_dly[(count_gate*5)+4] <= cal4_gate_srl_a[4]; |
---|
| 2349 | gate_dly[(count_gate*5)+3] <= cal4_gate_srl_a[3]; |
---|
| 2350 | gate_dly[(count_gate*5)+2] <= cal4_gate_srl_a[2]; |
---|
| 2351 | gate_dly[(count_gate*5)+1] <= cal4_gate_srl_a[1]; |
---|
| 2352 | gate_dly[(count_gate*5)] <= cal4_gate_srl_a[0]; |
---|
| 2353 | end |
---|
| 2354 | // check to see if we've found edge of window |
---|
| 2355 | if (!idel_set_wait) |
---|
| 2356 | cal4_state <= CAL4_FIND_EDGE; |
---|
| 2357 | end |
---|
| 2358 | |
---|
| 2359 | // give additional time for RDEN_R pipe to clear from effects of |
---|
| 2360 | // previous pipeline (and IDELAY reset) |
---|
| 2361 | CAL4_RDEN_PIPE_CLR_WAIT: begin |
---|
| 2362 | // MIG 2.2: Bug fix - make sure to update GATE_DLY count, since |
---|
| 2363 | // possible for FIND_EDGE->RDEN_PIPE_CLR_WAIT->FIND_WINDOW |
---|
| 2364 | // transition (i.e. need to make sure the gate count updated in |
---|
| 2365 | // FIND_EDGE gets reflected in GATE_DLY by the time we reach |
---|
| 2366 | // state FIND_WINDOW) - previously GATE_DLY only being updated |
---|
| 2367 | // during state CAL4_IDEL_WAIT |
---|
| 2368 | if (SIM_ONLY != 0) begin |
---|
| 2369 | for (i = 0; i < DQS_WIDTH; i = i + 1) begin: loop_sim_gate_dly_pipe |
---|
| 2370 | gate_dly[(i*5)+4] <= cal4_gate_srl_a[4]; |
---|
| 2371 | gate_dly[(i*5)+3] <= cal4_gate_srl_a[3]; |
---|
| 2372 | gate_dly[(i*5)+2] <= cal4_gate_srl_a[2]; |
---|
| 2373 | gate_dly[(i*5)+1] <= cal4_gate_srl_a[1]; |
---|
| 2374 | gate_dly[(i*5)] <= cal4_gate_srl_a[0]; |
---|
| 2375 | end |
---|
| 2376 | end else begin |
---|
| 2377 | gate_dly[(count_gate*5)+4] <= cal4_gate_srl_a[4]; |
---|
| 2378 | gate_dly[(count_gate*5)+3] <= cal4_gate_srl_a[3]; |
---|
| 2379 | gate_dly[(count_gate*5)+2] <= cal4_gate_srl_a[2]; |
---|
| 2380 | gate_dly[(count_gate*5)+1] <= cal4_gate_srl_a[1]; |
---|
| 2381 | gate_dly[(count_gate*5)] <= cal4_gate_srl_a[0]; |
---|
| 2382 | end |
---|
| 2383 | // look for new window |
---|
| 2384 | if (calib_rden_pipe_cnt == 5'b00000) |
---|
| 2385 | cal4_state <= CAL4_FIND_WINDOW; |
---|
| 2386 | end |
---|
| 2387 | |
---|
| 2388 | // increment/decrement DQS/DQ IDELAY for final adjustment |
---|
| 2389 | CAL4_ADJ_IDEL: |
---|
| 2390 | // add underflow protection for corner case when left edge found |
---|
| 2391 | // using fewer than MIN(BIT_TIME_TAPS,32) taps |
---|
| 2392 | if ((cal4_idel_adj_cnt == 6'b000000) || |
---|
| 2393 | (cal4_dlyce_gate && !cal4_dlyinc_gate && |
---|
| 2394 | (cal4_idel_tap_cnt == 6'b000001))) begin |
---|
| 2395 | cal4_state <= CAL4_DONE; |
---|
| 2396 | // stop when all gates calibrated, or gate[0] cal'ed (for sim) |
---|
| 2397 | if ((count_gate == DQS_WIDTH-1) || (SIM_ONLY != 0)) |
---|
| 2398 | calib_done_tmp[3] <= 1'b1; |
---|
| 2399 | else |
---|
| 2400 | // need for VHDL simulation to prevent out-of-index error |
---|
| 2401 | next_count_gate <= count_gate + 1; |
---|
| 2402 | end else begin |
---|
| 2403 | cal4_idel_adj_cnt <= cal4_idel_adj_cnt - 1; |
---|
| 2404 | cal4_dlyce_gate <= 1'b1; |
---|
| 2405 | // whether inc or dec depends on whether left or right edge found |
---|
| 2406 | cal4_dlyinc_gate <= cal4_idel_adj_inc; |
---|
| 2407 | end |
---|
| 2408 | |
---|
| 2409 | // wait for IDELAY output to settle after decrement. Check current |
---|
| 2410 | // COUNT_GATE value and decide if we're done |
---|
| 2411 | CAL4_DONE: |
---|
| 2412 | if (!idel_set_wait) begin |
---|
| 2413 | count_gate <= next_count_gate; |
---|
| 2414 | if (calib_done_tmp[3]) begin |
---|
| 2415 | calib_done[3] <= 1'b1; |
---|
| 2416 | cal4_state <= CAL4_IDLE; |
---|
| 2417 | end else begin |
---|
| 2418 | // request auto-refresh after every DQS group calibrated to |
---|
| 2419 | // avoid tRAS violation |
---|
| 2420 | cal4_ref_req <= 1'b1; |
---|
| 2421 | if (calib_ref_done) |
---|
| 2422 | cal4_state <= CAL4_INIT; |
---|
| 2423 | end |
---|
| 2424 | end |
---|
| 2425 | endcase |
---|
| 2426 | end |
---|
| 2427 | |
---|
| 2428 | endmodule |
---|